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Problem Statement

Defining terms
StereoCamera GPS

Lidar

State:
p(xk|u1:k, y1:k)→ N

(
x̂k, P̂k

)

Motion model:

xk = h (xk−1,uk,wk) , wk ∼ N (0,Qk)

Sensor model:

yk = g (xk,nk) , nk ∼ N (0,Rk)
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Problem Statement

Goal
Goal at time-step k:

{x̂k−1, P̂k−1,uk, yk} → {x̂k, P̂k}

Measurement update (correction step):

x̂k = x̂−k + Kk (yk − ŷk)
P̂k = P̂−

k −KkUT
k

I x̂−k : Predicted state
I P̂−

k : Predicted covariance
I Kk : Kalman gain
I ŷk : Predicted measurement
I Uk : Cross-covariance term
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The Extended Kalman Filter (EKF) Overview

Extended Kalman Filter

I Nonlinear extension to the famous ‘Kalman Filter’
I EKF uses a first-order Taylor series expansion of the motion and

observation models with respect to the current state estimate

I Prediction step:

x̂−k = h(x̂k−1,uk, 0)

P̂−
k = Hx,kP̂k−1HT

x,k + Hw,kQkHT
w,k

where

Hx,k :=
∂h(xk−1,uk,wk)

∂xk−1

∣∣∣∣
x̂k−1,uk,0

, Hw,k :=
∂h(xk−1,uk,wk)

∂wk

∣∣∣∣
x̂k−1,uk,0

.
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The Extended Kalman Filter (EKF) Example

Example

I Consider a simple example with a quadratic nonlinearity,

h (xk−1, uk, wk) = x2
k−1 + wk
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The Extended Kalman Filter (EKF) Example

Example

(Loading)

Colin McManus (UTIAS) The UKF for State Estimation May 29th, 2010 7 / 28


ekf3.wmv
Media File (video/x-ms-wmv)



UTIAS

The Extended Kalman Filter (EKF) Summary

Strengths and weaknesses

Strengths:
I Computationally inexpensive

Weaknesses:
I For highly nonlinear problems, the EKF is known to encounter

issues with both accuracy and stability (Julier et al. ,1995; Wan
and van der Merwe, 2000)

I When analytical Jacobians are not available, numerical Jacobians
are required
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The Unscented Kalman Filter (UKF) Overview

Unscented Kalman Filter

I Introduced by Julier et al. (1995) as a derivative-free alternative to
the EKF

I UKF uses a weighted set of deterministically sampled points
called sigma-points, which are passed through the nonlinearity
and are used to approximate the statistics of the distribution

I Unscented Transformation is accurate to at least third-order for
Gaussian systems
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The Unscented Kalman Filter (UKF) Overview

Unscented Kalman Filter

Image taken from van der Merwe and Wan (2001).
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The Unscented Kalman Filter (UKF) Overview

The Unscented Transformation

A set of 2N + 1 sigma-points is computed from the prior density,
N
(

x̂k−1, P̂k−1

)
, according to

SST := P̂k−1 (Cholesky decomposition)
X0 := x̂k−1

Xi := x̂k−1 +
√
N + κ coliS

i = 1 . . . NXi+N := x̂k−1 −
√
N + κ coliS

where N = dim(x̂k−1).

X−
i = h (Xi) , for i = 0 . . . 2N
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The Unscented Kalman Filter (UKF) Overview

The Unscented Transformation

The mean and covariance are computed as follows:

x̂−k =
1

N + κ

(
κX−

0 +
1

2

2N∑
i=1

X−
i

)
,

P̂−
k =

1

N + κ

(
κ
(
X−

0 − x̂
) (
X−

0 − x̂
)T

+
1

2

2N∑
i=1

(
X−
i − x̂

) (
X−
i − x̂

)T)
.

I Why this deterministic sampling scheme?
I Consider the expectation of the prior mean plus a disturbance:

x̂−k = E [h (x̂k−1 + ∆x)] , ∆x ∼ N
(

0, P̂k−1

)
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The Unscented Kalman Filter (UKF) Overview

Analytical Linearization

x̂−k = E [h (x̂k−1 + ∆x)]

= h (x̂k−1) + E
[

D∆xh +
D2

∆xh
2!

+
D3

∆xh
3!

+
D4

∆xh
4!

+ . . .

]
where,

Dn
∆xh
n!

=
1

n!

(
N∑
i=1

∆xn
∂

∂xn

)n
h (x)

∣∣∣∣∣
x=x̂k−1
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The Unscented Kalman Filter (UKF) Overview

Analytical Linearization
By symmetry, odd-moments are zero,

x̂−k = h (x̂k−1) + E
[

D2
∆xh
2!

+
D4

∆xh
4!

+ . . .

]

The second-order term is given by,

E
[

D2
∆xh
2!

]
=

(
∇TE

[
∆x∆xT

]
∇

2!

)
h

∣∣∣∣∣
x=x̂k−1

=

(
∇T P̂k−1∇

2!

)
h

∣∣∣∣∣
x=x̂k−1

Resulting in the following

x̂−k = h (x̂k−1) +

(
∇T P̂k−1∇

2!

)
h

∣∣∣∣∣
x=x̂k−1

+ E
[

D4
∆xh
4!

+ . . .

]
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The Unscented Kalman Filter (UKF) Overview

Statistical Linearization

We define some samples according to

Xi := x̂k−1 + σi
i = 0 . . . 2NX−

i = h (Xi)

where N = dim (x̂k−1). Now we calculate the weighted sigma-point
expectations and compare with the ‘true’ mean
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The Unscented Kalman Filter (UKF) Overview

Statistical Linearization

x̂−k = h (x̂k−1) +
1

2(N + κ)

2N∑
i=1

(
Dσih +

D2
σih
2!

+
D3
σih
3!

+
D4
σih
4!

+ . . .

)

The second-order term is given by

D2
σih
2!

=

(
∇TσiσTi ∇

2!

)
h
∣∣∣∣
x=x̂k−1

Recall

E
[

D2
∆xh
2!

]
=

(
∇TE

[
∆x∆xT

]
∇

2!

)
h

∣∣∣∣∣
x=x̂k−1

=

(
∇T P̂k−1∇

2!

)
h

∣∣∣∣∣
x=x̂k−1
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The Unscented Kalman Filter (UKF) Overview

Statistical Linearization

x̂−k = h (x̂k−1) +
1

2(N + κ)

2N∑
i=1

(
Dσih +

D2
σih
2!

+
D3
σih
3!

+
D4
σih
4!

+ . . .

)

The second-order term is given by

D2
σih
2!

=

(
∇TσiσTi ∇

2!

)
h
∣∣∣∣
x=x̂k−1

Recall

E
[

D2
∆xh
2!

]
=

(
∇TE

[
∆x∆xT

]
∇

2!

)
h

∣∣∣∣∣
x=x̂k−1

=

(
∇T P̂k−1∇

2!

)
h

∣∣∣∣∣
x=x̂k−1

Colin McManus (UTIAS) The UKF for State Estimation May 29th, 2010 16 / 28



UTIAS

The Unscented Kalman Filter (UKF) Overview

Statistical Linearization

We let σi := ±
√
N + κcoliS, where SST = P̂k−1, which gives

x̂−k = h (x̂k−1) +

(
∇T P̂k−1∇

2!

)
h

∣∣∣∣∣
x=x̂k−1

+
1

2(N + κ)

2N∑
i=1

(
D4
σih
4!

+ . . .

)

Compare above with analytical linearization

x̂−k = h (x̂k−1) +

(
∇T P̂k−1∇

2!

)
h

∣∣∣∣∣
x=x̂k−1

+ E
[

D4
∆xh
4!

+ . . .

]
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The Unscented Kalman Filter (UKF) Example

Example

(Loading)
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The Unscented Kalman Filter (UKF) UKF variants

Augmented UKF

xk = h (xk−1,uk,wk) , wk ∼ N (0,Qk)

yk = g (xk,nk) , nk ∼ N (0,Rk)

I Completely general case, both the prior belief, the process noise
and measurement noise have uncertainty so these are stacked
together in the following way:

z :=

x̂k−1

0
0

 , Y :=

P̂k−1 0 0
0 Qk 0
0 0 Rk


I Let N := dim (x̂), P := dim (Qk), M := dim (Rk)

I Number of sigma-points: 2(N + P +M) + 1
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The Unscented Kalman Filter (UKF) UKF variants

Additive noise
I If our motion and observation model are given by

xk = h (xk−1,uk) + wk, wk ∼ N (0,Qk)

yk = g (xk) + nk, nk ∼ N (0,Rk)

I Only 2N + 1 sigma-points are required!

z := x̂k−1, Y := P̂k−1

I Must re-draw sigma-points from {x̂−k , P̂
−
k } for the correction step

(lose odd-moment information)
I Alternatively, we can use 2(N + P ) + 1 sigma-points for the

correction step and avoid re-drawing (incorporate
√

Qk into
sigma-points)
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The Unscented Kalman Filter (UKF) UKF variants

Additive noise

I If our motion and observation model are given by

xk = h (xk−1,uk,wk) , wk ∼ N (0,Qk)

yk = g (xk) + nk, nk ∼ N (0,Rk)

I Only 2(N + P ) + 1 sigma-points are required

z :=

[
x̂k−1

0

]
, Y :=

[
P̂k−1 0

0 Qk

]
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The Unscented Kalman Filter (UKF) UKF variants

Other efficiency improvements

I Spherical-simplex sigma-points (Julier et al., 2003)
I Used a set of N + 2 sigma-points, which were chosen to minimize

the third-order moments (accurate to second-order)
I Reduced sigma-point UKF (Quine, 2006)

I Used a minimal set of N + 1 sigma-points (accurate to
second-order)

I Square-root Unscented Kalman Filter (van der Merwe and Wan,
2001)

I Efficient square-root form that avoids refactorizing the state
covariance at the prediction step and reduces computational cost
required to compute the Kalman gain

I Present additional benefits in terms of numerical stability and
ensures that the state covariance is always positive-definite
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I Square-root Unscented Kalman Filter (van der Merwe and Wan,
2001)

I Efficient square-root form that avoids refactorizing the state
covariance at the prediction step and reduces computational cost
required to compute the Kalman gain

I Present additional benefits in terms of numerical stability and
ensures that the state covariance is always positive-definite
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The Unscented Kalman Filter (UKF) Summary

Strengths and weaknesses

Strengths:
I Unscented Transformation is accurate to third-order for Gaussian

systems
I Derivative-free (easy implementation)

Weaknesses:
I Depending on noise assumptions, can be expensive
I Sigma-point scaling issues

I The Scaled Unscented Kalman Filter (Julier, 2002)
I Additional weight parameters (Wan and van der Merwe, 2000)

Colin McManus (UTIAS) The UKF for State Estimation May 29th, 2010 23 / 28



UTIAS

The Unscented Kalman Filter (UKF) Summary

Strengths and weaknesses

Strengths:
I Unscented Transformation is accurate to third-order for Gaussian

systems
I Derivative-free (easy implementation)

Weaknesses:
I Depending on noise assumptions, can be expensive
I Sigma-point scaling issues

I The Scaled Unscented Kalman Filter (Julier, 2002)

I Additional weight parameters (Wan and van der Merwe, 2000)

Colin McManus (UTIAS) The UKF for State Estimation May 29th, 2010 23 / 28



UTIAS

The Unscented Kalman Filter (UKF) Summary

Strengths and weaknesses

Strengths:
I Unscented Transformation is accurate to third-order for Gaussian

systems
I Derivative-free (easy implementation)

Weaknesses:
I Depending on noise assumptions, can be expensive
I Sigma-point scaling issues

I The Scaled Unscented Kalman Filter (Julier, 2002)
I Additional weight parameters (Wan and van der Merwe, 2000)

Colin McManus (UTIAS) The UKF for State Estimation May 29th, 2010 23 / 28



UTIAS

EKF and UKF Comparison Summary

Accuracy
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I Tong, C. and Barfoot, T.D. “A Comparison of the EKF, SPKF, and the
Bayes Filter for Landmark-Based Localization,” In Proceedings of the 7th
Canadian Conference on Computer and Robot Vision (CRV), to appear.
Ottawa, Canada, 31 May - 2 June 2010.
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EKF and UKF Comparison Summary

Computational cost

I In general, EKF cost < UKF cost

I Problem dependent
I UKF form:

I Additive UKF
I Augmented UKF

I Sigma point reduction:
I Spherical-simplex sigma-points (Julier et al., 2003)
I Reduced sigma-point UKF (Quine, 2006)
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Questions

Any Questions?
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