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Normal Distribution - Gaussian

• Gaussian models normal distribution
• 1-D parameters: mean, sigma
• 2-D parameters: mean vector, covariance matrix



1-D Gaussians

• The Kalman filter is based on manipulating gaussian approximations 
of probability density functions (PDF’s).

• Useful property of gaussian functions is that multiplying two
gaussian functions yields a third gaussian.

Hardware designers select one or the other based on situation, usually favor separate 
enables for timing reasons



Multiplying two 1-D Gaussians



Deriving multiplying two 1-D Gaussians



Deriving multiplying three 1-D Gaussians



Multiplying 1-D Gaussians

Multiplying 2 gaussians

Multiplying 3 gaussians



Show 1d_gaussian_gui.exe



N-D Gaussians

• Multi-dimensional gaussian can be created by putting gaussians on 
different orthogonal axes = multiplying with different variables

(Image from Wikipedia)

• 2-D example: One gaussian 
in X-axis, one in Y-axis



• Use rotation matrix R to align along arbitrary axes

• 2-D gaussian aligned along X, Y axes

• Matrix C is not diagonal as is Σ



Therefore
-a covariance matrix can be rotated to axes where Σ is a diagonal matrix
-a covariance matrix can be represented as an N-D shape of orthogonal 

gaussians

Justification of N-D gaussians

• Covariance matrix of an 2-D data set

• SVD
A=UDVt   D = diagonal
SVD of A=StS : U=V
A=UDUt

• Covariance matrix 
of an N-D data set

• We need 1/σ2 form

• PDF=k   =ellipse in 2-D, =ellipsoid in 3-D



Linear Functions and PDF’s

What happens to a PDF when passing through a linear function (matrix 
operation)?

• Input variable X – has mean Ux and covariance Covx

• Linear function  Y = A X

• Output variable Y – has mean Uy and covariance Covy

Uy = A Ux

Covy = ACovx At



• Expanded form – useful for multiplication



Multiplying N-D Gaussians

Multiplying 2 gaussians

Each gaussian PDF has a mean (centroid) vector U and a covariance C-1

Inputs

Output



Multiplying N-D Gaussians

Each gaussian PDF has a mean (centroid) vector U and a covariance C-1

Inputs

Output

Rename covariance P = C-1

Pr = (P1
-1 + P2

-1)-1 Ur = Pr(P1
-1 U1 + P2
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Inputs

Output



Multiplying Gaussians

Multiplying 1-D gaussians

Multiplying N-D gaussians

Pr = (P1
-1 + P2

-1)-1 Ur = Pr(P1
-1 U1 + P2

-1 U2)-1

Inputs

Output
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Baye’s Rule and Kalman Filters

Baye’s Rule

• Prob(A|B) ~= Prob(A)Prob(B|A)

• Output variable Y – has mean Uy and covariance Covy

Kalman Filter – Find Prob(X) given measurements Z

• X=state variables, Z=measurements

• Want Prob(X|Z)

• Prob(X|Z) ~= Prob(X)Prob(Z|X)         (update eqns)

• X has normal distribution PDF given by mean =     and Covar = P

• What is probability of observed Z given X?

• P(Z|X) has mean = Z and Covar = S
kkkkkk RHPHS += −

T
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Multiply two PDF’s = Kalman Filter



Kalman Filter = Multiply two N-D Gaussians

Multiplying N-D gaussians

Pr = (P1
-1 + P2

-1)-1 Ur = Pr(P1
-1 U1 + P2

-1 U2)-1

Inputs

Output

• Prob(X|Z) ~= Prob(X)Prob(Z|X)         (update eqns)

• PDF1=X has normal distribution PDF given by mean =     and Covar = P

• PDF2=Z has normal distribution PDF given by mean = Z 
and Covar = HPHt + R

• PDFr = PDF1PDF2 = next iteration X,P

• Pr = Pnext = [P–1 + (HPHt +R)]–1

• Ur = Xnext = [P–1 + (HPHt +R)]–1 [P–1X^ + (HPHt +R)–1 Z]

Multiply two PDF’s = Kalman Filter



Kalman Filter = Multiply two N-D Gaussians

• Pr = Pnext = [P–1 + (HPHt +R)]–1

• Ur = Xnext = [P–1 + (HPHt +R)]–1 [P–1X^ + (HPHt +R)–1 Z]

Multiply two PDF’s = Kalman Filter

After some algebra and use of inversion lemma
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EKF: Extended Kalman filter

• Allow non-linear functions (F, H)
• Apply functions to state

• Apply jacobian to covariances
• Linearizing functions around current 

estimate
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Slide courtesy Adam Rachmielowski (Univ. Alberta)
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