World Representation and Path
Planning Using the A* Algorithm

By Alex Ufkes

' o oE Dot

$ulddios - gy
£3, e

» - &

:
Objectlve

fe shortekt (or least weighted) path

ffom)pomt A to point B

In this simple example, we
\‘ want to go from the start point
¥ (green) to the end point: (red)
7 while avoiding the obstacles="
7 (blue).

http://www.policyalmanac.org/games/aStarTutorial.htm

We will use the A* (A star) algorithm to do this.

/
What is A"‘f,and how does it work?

Terminology:

- G(n) is the distance (or cost) of
the path from the starting pointto
any vertexT:

- H(n) is the heuristic estim Jree:
W' cost from any vertex n to the goal.

- F(n) is the value that A* will
use to select the next step in the
http://theory.stanford.edu/~amitp/GameProgramming/

AStarComparison.html#S3 path TO ﬁnd F(n)) we Slmply add
G(n) and H(n).

Calculating G(n) and H(n)

- G(n) is calculated by adding the
cost of moving to the next
square to the cost of getting to
the current square.

- H(n) is-basically«a guess at how)
far away we are fromsthesgoal,
and can be calculated in any™= mEEea
number of ways. :

- The method used will directly T,
affect the speed and accuracy of

the algorithm, so it is important to
take care when determining Hn)-

.

-~

Back to our example...

- Here we see our starting point
again, with G, H, and F values filled in
for each adjacent square.

=In-this case, each grid square is 10
units across. Thismeans that G is 10
for directly adjacent squares;and 14
for diagonally adjacent squares.
(sqrt(2) ~=14/10)

- We use the Manhattan method to
find H, which is the number of
vertical and horizontal moves Iy soll 10 50

required to reach the'goal, ighorie
ObStadeS, and mU|t|pIY|ng by io http://www.poIicyaImanac.org/game§/StarTu'foriaI.htm

- The algorithm begins by creating an open and a closed list. The open list
contains all the squares that can be reached from the current square, and
the closed list contains all the squares that we don’t need to bother
looking at, such as the parent of the current square.

- We now pick from the open list the square with the lowest F'score. This
becomes our new current square, and the previous square is addedto

the closed list. The new square in this case is directly to the right.

> i
X £
- Now that we have a new current v

sqUare-we needil BORCE the http://www.policyalmanac.org/games/aStarTutorial.htm
squares adjacent tositsiehe
adjacent square is impassable oren
the closed list, we ignore it. If the
adjacent square is not on the open
list, we add it. Finally, if the adjacent
square is already on the open list,
we check if this new path is shorter,
and, if it is, we change that sacuare ’S
parent to the current Square.

http://www.policyalmanac.org/games/aStarTutorial.htm

- The next iteration chooses the
square below. Notice how the
arrows point to that square’s
parent, and how they change as
smaller paths are found.

- The algorithm ends when the
goal square has been added to

the closed list.

/
Fip,dingthe Path

- A

‘ - The smallest path is obtained
by walking back through the
list of parents starting at the
goal square.

r4 |

Bz 11:] 8z

'T

- Go from the goal square to
22 iofRRNER] - | —its parentythen fromthat

i 0 e | - square to its parent; etc.
s _afe s sl Repeat this until we ares

I | L) 74 74 TE
. — | o back at the starting square.
EL YOy 4M 3oy 54 20| 72 EL

- With the right heuristic we
will have found the shortest

http://www.policyalmanac.org/games/aStarTutorial.htm p at h .

Triangles?

—

- One way to improve on this result is
tochange the way we divide our
search area.

--A square grid is the simplest way of

dividing a spaee,but it d@es not always
generate a smooth path;"and réquires a
large number of nodes to be effective:.

- Another option is to divide the search
area into triangles. This provides an
advantage because triangles can easily™
be constructed around.any polygon,
whereas fitting polygons intesaisquare
grid tends to be clumsy.afc Ur(matural,

Delaunay Triangulation

- The Delaunay triangulation of a
set of points is a triangulation such
that no point lies within the

circumcircle of any of the triangles.

&8

p://en.wikipedia.org/wiki/Delaunay_triangulation

- This is a very effective way of dividing
the world. It maximizes the smallest
angles and thus generatesas e
skinny triangles as possible.--j

hd

Triangulated Example

- The simplest way to traverse
a triangulated world is to use

the midpoints of the triangle / /
edges as nodes. /

- Giscalculated asian estimate
of the distance travelecSasfar,
and H is the Euclidean
distance from the current
node to any point on the goal
triangle’s entry edge.

- The A* algorithm can then
be carried out in the exact
same way as before.

- Adjacent nodes are simply
the edges that comprise the
two triangles of which the
current node is also an edge.

- The open and closed lists are
maintained just as before,
with closed edges being those
previously visited and those

that share an edge with an
obstacle.

/
Triangulation-Based Pathfinding Cont.

\ﬁ - Using triangle edge midpoints as nodes
I produces a smoother path traversing
fewer nodes than the grid-based method,
but there is still room for improvement.

- Once the path along the midpoints is
fg@hd, it creates a “channel” of triangles

| %"gol')fg from theé'start point to the goal. We
n’ow want to find the shortest o T ——
t r/jugh this channel.

: Tﬁe disadvantage here is that we don’t
know the actual path we have taken until
after the goal is found. Until then, we only
have information about the channel itself.

Funnel Algorithm

- Once we have our channel, we
apply the funnel algorithm to find
the shortest path through it.

- The algorithm essentially steps
through.the vertices of the channel
that lie inside the“initial i ianel(A-D).

- Once one side can move no further
we continue moving the other side
until it overlaps with the first (E-F).

- At this point, the endpoint'of the
edge that is being overlapped
becomes the new apex, and/ithe
algorithm repeats (G). £ e/

digestingduck.blogspot.com
/2010/03/simple-stupid-
' funnel-algorithm.html

/
Accounting for Size

- L m— 7 .

™. 77
s 7
3 Y;’ / Al
. + . +
PO e
L Y4

- Mobile robots are not points,
they have both width and depth.

- In order to avoid driving
against a wall or corner, we can
use a modified version of the.=
funnel algorithmthat leaves a
specified amount of cledrang

- By drawing circles/a_wﬂnd every</ertex and modifying the funnel
algorithm to creatgfpaths that"are tangent to these circles, we can
ensure that a robot of non=zero size can safely travel this path.

Voronoi Diagrams in Brief

- Generalized Voronoi diagrams and their corresponding graphs provide
another tool that can be used in robot navigation and path planning.

- The GVD is-obtained by drawing
all possible line segments that
meet the following conditions:

1. The line segment mustoe
equidistant from two obstacle
faces that are within line of sight
of each other.

2. No part of the line segment
may be closer to a third obstacle
face than it is to the two from

- Gregf¥lines connect a few/sample lines
which it is equidistant. ¢

v J 1 [/
apEneInrespective obstallle edges:
11 X 7 ;

- A Generalized Voronoi Graph, or
GVG, is created by placing a vertex at
the endpoints and meeting points of
the line segments in the GVD.

- Additional information such as
curve description and length is
added to the lines, and the distance
from obstacles is added to the

\ vertices.

http://www.sfbtr&wni-bremén.de/progct/r3/HGVG
ierarchicalVGraphs.

- Given thisThAformation, we can
assess the relevance of eaCieuesiex.

v

'/;) in the graph. For example, does the

J
\

7 robot have clearance to reach this

- vertex, does the robot have any

reason to travel to this vertex, etc.

Simplifying the GVG

- The value of a vertex can be
determined in many ways,
such as the degree of the
vertex, the clearance on all
sides of the vertex: etc. &

- The end result is a simpler
graph that ideally provides
coverage to all areas of the
map and provides enough
clearance for the robot to
travel freely within the world.

y

Further Reading

