Window-Based Range Flow with an Isometry Constraint

Ting Yu and Jochen Lang University of Ottawa

uOttawa

L'Université canadienne Canada's university

Université d'Ottawa | University of Ottawa

uOttawa.ca

Goal

• Modelling human-object interactions from observations.

 Obtain an interaction model by estimating a relationship between forces and surface deformation in unconstrained settings.

Approach

- Employ isometry constraint in a local flow method
- Motivation:
 - Optical flow for intensity and range images work well for small flow
 - E.g., Mequon sequence of [Baker et al.] has a maximal flow of 10 pixels.
 - Scene Flow [Vedula et al. '05], Range Flow [Spies et al. 02] [Schuchert et al. '08]
 - Recent deformable registration methods, e.g., [Pritchard and Heidrich '03, Starck and Hilton '07, Bradley et al. '08, Ahmed et al. 08, Tevs et al. '09, Li et al. '09] work well for large scale-motion between shapes
 - Often-based on assumption of isometric deformations
 - Not local flow methods

T. Yu, J. Lang, "Window-Based Range Flow with an Isometry Constraint"

Contributions

- We propose a novel window-based matching technique for range flow based on isometric surface deformation.
- We analyze the degradation of the isometry constraint for surfaces which deform non-isometric and in the presence of topological noise.
- We apply our technique on noisy range data obtained with a commercial binocular stereo system.

Point Grey's Bumblebee 2

T. Yu, J. Lang, "Window-Based Range Flow with an Isometry Constraint"

Geodesic Distance Evaluation

Questions

- Does the approximation error increase with path length?
- Do boundary vertices in the pixel graph signal approximation error?

Experiment Setup

- Use KLT feature points
- Evaluate the isometry constraint for each feature point based on all other feature points
- For path length error
 - Use only paths without boundary vertices
- Assumes KLT calculates the correct distance

Two-phase Matching

- First phase
 - Isometry-based matching from intensity-based anchors (KLT)
- Second phase
 - Isometry-based matching from isometry-based anchors
- Matching parameters
 - Window size
 - Pixel neighborhood (in second phase only)
 - Threshold d_{max} Maximum path length difference
 - Threshold n_{min} Minimum number of shortest paths

Conclusion and Future work

Conclusion

- Novel window-based matching technique for range flow based on isometry constraint.
- Evaluated of the degradation of the isometry constraint for surfaces which deform non-isometrically and in the presence of topological noise.
- Applied our technique to noisy range date obtained with a commercial binocular stereo system.

Future Work

- More efficient approximate closest path calculation
- Combining the isometry constraint with range flow constraint
- Different range data

T. Yu, J. Lang, "Window-Based Range Flow with an Isometry Constraint"

