Efficient Augmentation of the EKF Structure from Motion with Frame-to-Frame Features

Adel Fakih and John Zelek

{afakih,jzelek}@engmail.uwaterloo.ca

June 2, 2010

Adel Fakih and John Zelek

Frame-to-Frame Features

June 2, 2010 1 / 20

Adel Fakih and John Zelek

Frame-to-Frame Features

June 2, 2010 2 / 20

Outline

Adel Fakih and John Zelek

June 2, 2010 3 / 20

< E

- (E

Proposed Approach (High-level Overview)

(□) (@) (E) (E) (E)

3 Proposed Approach: The Details

4 Experimental Results

Proposed Approach (High-level Overview) Proposed Approach: The Details Experimental Results

Introduction

- Frame-to-Frame Features
 - Provide additional constraints on the velocity.
 - Abundant (Under Gaussian noise assumption, consistent estimation leads to higher accuracy).
 - Have been used earlier in:
 - bundle adjustment.
 - Particle Filtering (only in weighting the particles).
 - Their direct insertion in the EKF is very costly (cubic complexity).

Adel Fakih and John Zelek

June 2, 2010 5 / 20

Proposed Approach (High-level Overview) Proposed Approach: The Details Experimental Results

Problem Formulation

- 3D Parameters to estimate
 - Motion:
 - Pose $[\overrightarrow{\Omega}; \overrightarrow{T}]$
 - Velocity $[\overrightarrow{\omega}; \overrightarrow{V}]$
 - Structure (3D points): $\overrightarrow{\mathbf{X}} = [\overrightarrow{X}^1; ...; \overrightarrow{X}^N]$

•
$$S = [S^1; S^2]$$

• $\overrightarrow{S}^1 = [\overrightarrow{\Omega}; \overrightarrow{T}; \overrightarrow{\mathbf{X}}]$
• $\overrightarrow{S}^2 = [\overrightarrow{\omega}; \overrightarrow{V}]$

- Measurements
 - Tracked Features: $\overrightarrow{\mathbf{y}}(t)=[\overrightarrow{y}^{1}(t);...;\overrightarrow{y}^{N}(t)]$
 - Frame-To-Frame features: $\overrightarrow{\mathbf{z}}(t) = [\overrightarrow{z}^1(t-1); \overrightarrow{z}^1(t); ...; \overrightarrow{z}^K(t-1); \overrightarrow{z}^K(t)]$

< ロ > < 同 > < 回 > < 回 >

University of

Proposed Approach (High-level Overview) Proposed Approach: The Details Experimental Results

Dynamical System

• Transition Equations:

$$\begin{cases} \overrightarrow{\mathbf{X}}(t+1) &= \overrightarrow{\mathbf{X}}(t) \\ \overrightarrow{T}(t+1) &= e^{\left[\overrightarrow{\omega}(t)\right]_{\times}} \overrightarrow{T}(t) + \overrightarrow{V}(t) \\ \overrightarrow{\Omega}(t+1) &= Log_{SO3}(e^{\left[\overrightarrow{\omega}(t)\right]_{\times}} e^{\left[\overrightarrow{\Omega}(t)\right]_{\times}}) \\ \overrightarrow{V}(t+1) &= \overrightarrow{V}(t) + \overrightarrow{a}_{V}(t) \\ \overrightarrow{\omega}(t+1) &= \overrightarrow{\omega}(t) + \overrightarrow{a}_{\omega}(t) \end{cases}$$

• Measurement Equations:

Proposed Approach (High-level Overview)

3 Proposed Approach: The Details

Proposed Approach

- Fold the Frame-to-Frame information in a separate filtering Step
 - By capitalizing on the special structure of the covariance matrix, the computational complexity can be reduced from cubic to linear
 - Can be divided into several steps
 - Can be done in a Random Sample Consensus way to get rid of outliers
 - Steps can be computed in parallel

Flowchart

2 Proposed Approach (High-level Overview)

3 Proposed Approach: The Details

Efficient Implicit Extended Kalman Filtering

• Implicit measurement equation: $h(\overrightarrow{\mathbf{z}},\overrightarrow{U}^1)=0$

$$\overrightarrow{U}^{1u} = \overrightarrow{U}^1 + Lh(\overrightarrow{U}^1, \overrightarrow{\mathbf{z}}) \qquad \Lambda = H_{\overrightarrow{U}^1} \Sigma_{\overrightarrow{U}^1} H_{\overrightarrow{U}^1}^T + R_{\overrightarrow{Z}} \Sigma_{\overrightarrow{U}^1}^u = \Gamma \Sigma_{\overrightarrow{U}^1} \Gamma^T + LR_{\overrightarrow{Z}} L^T \qquad L = -\Sigma_{\overrightarrow{U}^1} H_{\overrightarrow{U}^1}^T (\Lambda)^{-1} R_{\overrightarrow{Z}} = H_{\overrightarrow{Z}} \Sigma_{\overrightarrow{Z}} H_{\overrightarrow{Z}}^T \qquad \Gamma = I_K - LH$$

• Sherman-Morrison-Woodbury formula + some manipulations:

$$L = -A + B(I_6 + B)^{-1}A$$

$$LH_{\vec{U}_1} = -B + B(I_6 + B)^{-1}B$$

$$A = (\Sigma_{\vec{U}_1} H_{\vec{U}_1}^T) R_{\vec{Z}}^{-1}$$

$$B = (\Sigma_{\vec{U}_1} H_{\vec{U}_1}^T) (R_{\vec{Z}}^{-1} H_{\vec{U}_1})$$

Adel Fakih and John Zelek

Frame-to-Frame Features

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Reduced Cost: Number of Multiplication Operations

$R_{\overrightarrow{\mathbf{z}}}^{-1}H_{\overrightarrow{U}^{1}}$	6K
$\Sigma_{\overrightarrow{U}^1} H_{\overrightarrow{U}^1}^T$	36K
$A = (\Sigma_{\overrightarrow{U}^1} H_{\overrightarrow{U}^1}^T) R_{\overrightarrow{\mathbf{z}}}^{-1}$	6K
$B = (\Sigma_{\overrightarrow{U}^1} H_{\overrightarrow{U}^1}^T) (R_{\overrightarrow{\mathbf{z}}}^{-1} H_{\overrightarrow{U}^1})$	36K
L	36K + 216
$LH_{\overrightarrow{U}^1}$	432
$\Sigma \frac{u}{U^{1}}$	42K + 432
\overrightarrow{U}^{1u}	6K
Total	162K + 1080

Adel Fakih and John Zelek

June 2, 2010 13 / 20

글 > - < 글 >

< 6 >

э

Update Propagation Using the Covariance Matrix

• $\overrightarrow{\mu}$ and Σ partitioned as follows:

$$\overrightarrow{\mu} = \begin{bmatrix} \overrightarrow{\mu}^1 \\ \overrightarrow{\mu}^2 \end{bmatrix} \qquad \Sigma = \begin{bmatrix} \Sigma^{11} & \Sigma^{12} \\ \Sigma^{21} & \Sigma^{22} \end{bmatrix}$$

• then if $\overrightarrow{\mu}^2$ and Σ^{22} are updated to be $\overrightarrow{\mu}^{2u}$ and Σ^{22u} , then $\overrightarrow{\mu}^{11}$, Σ^{11} and Σ^{12} should be updated as follows:

$$\overrightarrow{\mu}^{1u} = \overrightarrow{\mu}^{1} + \Sigma^{12} (\Sigma^{22})^{-1} (\overrightarrow{\mu}^{2u} - \overrightarrow{\mu}^{2})$$
$$\Sigma^{12u} = \Sigma^{12} (\Sigma^{22})^{-1} \Sigma^{22u}$$
$$\Sigma^{11u} = \Sigma^{11} - \Sigma^{12} (\Sigma^{22})^{-1} (\Sigma^{22} - \Sigma^{22u}) (\Sigma^{22})^{-1} \Sigma^{21}$$

Adel Fakih and John Zelek

June 2, 2010 14 / 20

Proposed Approach (High-level Overview)

(□) (@) (E) (E) (E)

3 Proposed Approach: The Details

Pose Error

Velocity Error

3D Points Error

Adel Fakih and John Zelek

Reprojection Error on Real Images

Thank you

Questions and comments?

Adel Fakih and John Zelek

Frame-to-Frame Features