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Robot Vision in Real-Time

Performance in robot vision is advancing fast. What are the reasons?

• Continued exponential increase in low-cost computer power.

• Bayesian probability theory: now widely agreed upon as the absolute
framework for doing inference with real-world data.

• A wealth of well understood methods that really work are publicly
available (well engineered algorithms or even code) and can be easily
used to put systems together.



Simultaneous Localisation and Mapping
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(a) Robot start (zero uncertainty); first measurement of feature A.



Simultaneous Localisation and Mapping

(b) Robot drives forwards (uncertainty grows).



Simultaneous Localisation and Mapping

(c) Robot makes first measurements of B and C.



Simultaneous Localisation and Mapping

(d) Robot drives back towards start (uncertainty grows more)



Simultaneous Localisation and Mapping

(e) Robot re-measures A; loop closure! Uncertainty shrinks.



Simultaneous Localisation and Mapping

(f) Robot re-measures B; note that uncertainty of C also shrinks.



SLAM with First Order Uncertainy Propagation
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
• Camera pose and map stored in single state vector and updated on

every frame via a single Extended Kalman Filter.

• Full PDF over robot and map parameters represented by a single
multi-variate Gaussian.



SLAM Using Vision: First Steps

• Fixating active stereo measuring one feature at a time.

• 5Hz real-time processing (100MHz PC!).

Davison and Murray, ECCV 1998, PAMI 2002.



SLAM Using Active Stereo Vision
Probabilistic Map Results
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Monocular SLAM

• Can we still do SLAM with a single unconstrained camera, flying
generally through the world in 3D?

• 30Hz or higher operation required to track agile motion.

• Salient feature patches detected once to serve as long-term visual
landmarks.

• Landmarks gradually accumulated and stored indefinitely.



Modelling an Agile Camera

Camera state representation: 3D position, orientation, velocity and
angular velocity:
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Each feature state is a 3D position vector:
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Prediction Step: A ‘Smooth Motion’ Model

Assume bounded, Gaussian-distributed linear and angular acceleration.
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Measurement Step: Image Features and Active Search

• Salient feature patches detected to serve as visual landmarks.

• Uncertainty-guided active search within elliptical regions.



Automatic Map Management

• Initialise system from a few known features.

• Add a new feature if number of measurable features drops below
threshold (e.g. 10).

• Choose salient image patch from search box not overlapping existing
features.



Monocular Feature Initialisation with Depth Particles
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MonoSLAM

Davison, ICCV 2003; Davison, Molton, Reid, Stasse, PAMI 2007.



Application: HRP-2 Humanoid at JRL, AIST, Japan

• Small circular loop within a large room

• No re-observation of ‘old’ features until
closing of large loop.



HRP2 Loop Closure

(Davison, Stasse, et al., PAMI 2007)



Dealing with Distant Features

• In low parallax stereo reconstruction:

• Monte Carlo simulation reveals high Gaussianity in ρ, θ space where
ρ is inverse depth.



Unified Inverse Depth Parameterisation for Monocular
SLAM

A scene 3D point i is defined by the state vector:

yi =
(
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)>
which models a 3D point located at: xi
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zi

+
1

ρi
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• Montiel, Civera, Davison, RSS 2006.



SLAM as a Bayesian Network
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(See ‘Probabilistic Robotics’, Thrun, Burgard and Fox, MIT Press 2005.)



General Components of a Scalable SLAM Algorithm

Local Metric Place Recognition Global Optimisation



Local Metric Estimation: ‘Visual Odometry’

• Civera et al., IROS 2009 (monocular EKF ‘forgetting filter’).

• High feature count provides local accuracy.



Global Topological: ‘Loop Closure Detection’

• Angeli et al., IEEE Transactions on Robotics 2008.



Optimisation: ‘Pose Graph Relaxation’

• Keyframe-based spherical mosaicing, Lovegrove and Davison, 2010.

• Local tracking relative to keyframes with parallel global optimisation.



Real-Time Monocular SLAM: Why Filter?
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• Hauke Strasdat, J. M. M. Montiel and Andrew J. Davison, ICRA
2010.

• A comparison: filtering vs. keyframes + optimisation for monocular
SLAM in terms of accuracy and computational cost.

• A clear winner with modern computing resources: keyframes +
optimisation.



Large Scale Monocular SLAM using Optimisation

Scale Drift-Aware Large Scale Monocular SLAM (Strasdat, Montiel,
Davison, Robotics: Science and Systems 2010).



Live Dense Reconstruction with a Single Camera

(Newcombe, Davison, CVPR 2010)

• During live camera tracking, perform dense per-pixel surface
reconstruction.

• Relies heavily on GPU processing for dense image matching.

• Runs live on current desktop hardware.



Live Dense Reconstruction with a Single Camera

Point Cloud Base Surface Bundle Matching

D(u,v)

Dense Depth Map Depth Map Stitching



Live Dense Reconstruction with a Single Camera

• Multiple depths maps stitched live into single desktop model.



Live Dense Reconstruction with a Single Camera



Active Matching for Super-Efficient Tracking

(Scalable Active Matching: Handa, Chli, Strasdat, Davison, CVPR 2010)

• Many systems work well if the update rate can be kept high,
because knowledge of continuity to permits local search: tracking.

• Active methods: updating online probabilistic estimates to drive
sequential decisions.



SLAM for Scene Segmentation and Understanding

• Keypoint clustering and video segmentation, Angeli and Davison
2010.


