Live Tracking and Reconstruction from Video

Andrew Davison
Department of Computing
Imperial College London

June 4, 2010



Robot Vision in Real-Time

Performance in robot vision is advancing fast. What are the reasons?

e Continued exponential increase in low-cost computer power.

e Bayesian probability theory: now widely agreed upon as the absolute
framework for doing inference with real-world data.

A wealth of well understood methods that really work are publicly
available (well engineered algorithms or even code) and can be easily
used to put systems together.




Simultaneous Localisation and Mapping

(a) Robot start (zero uncertainty); first measurement of feature A.



Simultaneous Localisation and Mapping
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(b) Robot drives forwards (uncertainty grows).



Simultaneous Localisation and Mapping
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(c) Robot makes first measurements of B and C.



Simultaneous Localisation and Mapping
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(d) Robot drives back towards start (uncertainty grows more)



Simultaneous Localisation and Mapping
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(e) Robot re-measures A; loop closure! Uncertainty shrinks.



Simultaneous Localisation and Mapping
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(f) Robot re-measures B; note that uncertainty of C also shrinks.



SLAM with First Order Uncertainy Propagation
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e Camera pose and map stored in single state vector and updated on
every frame via a single Extended Kalman Filter.

e Full PDF over robot and map parameters represented by a single
multi-variate Gaussian.



SLAM Using Vision: First Steps

o Fixating active stereo measuring one feature at a time.
e 5Hz real-time processing (100MHz PC!).




SLAM Using Active Stereo Vision

Probabilistic Map Results




Monocular SLAM

e Can we still do SLAM with a single unconstrained camera, flying
generally through the world in 3D?

e 30Hz or higher operation required to track agile motion.

o Salient feature patches detected once to serve as long-term visual
landmarks.

e Landmarks gradually accumulated and stored indefinitely.



Modelling an Agile Camera

Camera state representation: 3D position, orientation, velocity and
angular velocity:

Each feature state is a 3D position vector:
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Prediction Step: A ‘Smooth Motion" Model
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Measurement Step: Image Features and Active Search

e Salient feature patches detected to serve as visual landmarks.

e Uncertainty-guided active search within elliptical regions.



Automatic Map Management

e |nitialise system from a few known features.

e Add a new feature if number of measurable features drops below
threshold (e.g. 10).

o Choose salient image patch from search box not overlapping existing
features.




Monocular Feature Initialisation with Depth Particles
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MonoSLAM

Davison, ICCV 2003; Davison, Molton, Reid, Stasse, PAMI 2007.



Application: HRP-2 Humanoid at JRL, AIST, Japan

e Small circular loop within a large room

e No re-observation of ‘old’ features until
closing of large loop.



HRP2 Loop Closure

(Davison, Stasse, et al., PAMI 2007)



Dealing with Distant Features

e In low parallax stereo reconstruction:
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e Monte Carlo simulation reveals high Gaussianity in p, # space where
p is inverse depth.



Unified Inverse Depth Parameterisation for Monocular
SLAM

A scene 3D point i is defined by the state vector:
-
yi=(x vi z 6 ¢ pi)
which models a 3D point located at:
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e Montiel, Civera, Davison, RSS 2006.



SLAM as a Bayesian Network
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(See ‘Probabilistic Robotics', Thrun, Burgard and Fox, MIT Press 2005.)



General Components of a Scalable SLAM Algorithm
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Local Metric Place Recognition Global Optimisation



Local Metric Estimation: ‘Visual Odometry’
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e Civera et al., IROS 2009 (monocular EKF ‘forgetting filter').
e High feature count provides local accuracy.



Global Topological: ‘Loop Closure Detection’

«'Loop closure detection?
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e Angeli et al., IEEE Transactions on Robotics 2008.



Optimisation: ‘Pose Graph Relaxation’

o Keyframe-based spherical mosaicing, Lovegrove and Davison, 2010.

e Local tracking relative to keyframes with parallel global optimisation.



Real-Time Monocular SLAM: Why Filter?

entropy reduction in bits

e Hauke Strasdat, J. M. M. Montiel and Andrew J. Davison, ICRA
2010.

e A comparison: filtering vs. keyframes + optimisation for monocular
SLAM in terms of accuracy and computational cost.

e A clear winner with modern computing resources: keyframes +
optimisation.



Large Scale Monocular SLAM using Optimisation

Scale Drift-Aware Large Scale Monocular SLAM (Strasdat, Montiel,
Davison, Robotics: Science and Systems 2010).
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Live Dense Reconstruction with a Single Camera

(Newcombe, Davison, CVPR 2010)

e During live camera tracking, perform dense per-pixel surface
reconstruction.

o Relies heavily on GPU processing for dense image matching.
e Runs live on current desktop hardware.



Live Dense Reconstruction with a Single Camera
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Live Dense Reconstruction with a Single Camera

o Multiple depths maps stitched live into single desktop model.




Live Dense Reconstruction with a Single Camera




Active Matching for Super-Efficient Tracking

(Scalable Active Matchlng Handa Chli, Strasdat Dawson CVPR 2010)
e Many systems work well if the update rate can be kept high,
because knowledge of continuity to permits local search: tracking.
o Active methods: updating online probabilistic estimates to drive
sequential decisions.



SLAM for Scene Segmentation and Understanding

o Keypoint clustering and video segmentation, Angeli and Davison
2010.



