Learning Structured Models for Recognizing Human Actions

Greg Mori School of Computing Science Simon Fraser University

Seventh Canadian Conference on Computer and Robot Vision June 2, 2010

Action Recognition

• Recognize human actions from raw video data

Gathering action data

- 3 components:
 - detect humans, track, recognize action

Far field

- 3-pixel man
- Blob tracking

Medium field

- 30-pixel man
- Coarse-level actions

Near field

- 300-pixel man
- Find and track limbs

Applications - Surveillance

- Automated video surveillance
 - Draw attention to actions of interest
 - Save human operator time

Yang, Lan, Mori TRECVid 2009

Applications – Scientific Data Collection

Automatically detect falls, near-falls

Applications – Road Safety

• Collect data on pedestrian behaviour

Collaboration with Saunier and Sayed (UBC, EPM Civil Engineering)

Applications - HCI

SFU Vision and Media Lab

Structured Models

- Models that account for spatial and temporal structure of actions
 - Flexible
 - E.g. local feature models
 - Capture the Gestalt
 - E.g. template representations
- This talk: representations and algorithms for structured models of human actions

Outline

- Combined parts and whole model
 - Wang and Mori NIPS 2008, CVPR 2009

- Latent pose estimation – Yang et al. CVPR 2010
- "Bag-of-words" sequence model – Wang and Mori T-PAMI 2009

Appearance vs. Motion

Jackson Pollock Number 21 (detail)

SFU Vision and Media Lal

Spatial Motion Descriptor

Image frame

Optical flow

Previous Work

Large-scale feature

[e.g. Efros, Berg, Mori, Malik, ICCV03]

Local patches

[e.g. Laptev & Perez, ICCV07]

Large vs. Small Scale Features

Challenge: How to combine in a principled manner?

Hidden Conditional Random Field

 $p(y, \mathbf{h} | \mathbf{x}) \propto \exp(\Psi(y, \mathbf{h}, \mathbf{x}))$

Finding Parts

SFU Vision and Media Lab

Learning hCRF Parameters

- Conditional likelihood
 - Integrate out latent part labels h
- Max-margin
 - Examine best setting for latent part labels h
 - Latent-SVM (Felzenszwalb et al. CVPR08), MI-SVM (Andrews et al. NIPS03)

Conditional Likelihood

 Choose parameters to make likelihood on ground-truth labels as large as possible

$$\ell = \sum_{t} \log p(y^{t} | \mathbf{x}^{t}) = \sum_{t} \log \left[\sum_{\mathbf{h}} p(y^{t}, \mathbf{h} | \mathbf{x}^{t}) \right]$$

Max-Margin

• Choose parameters to make score on groundtruth label higher than any competing label

$$\max_{\mathbf{h}} p(Y = y^t, \mathbf{h} | \mathbf{x}^t) > \max_{\mathbf{h}} p(Y \neq y^t, \mathbf{h} | \mathbf{x}^t)$$

Experiments: Weizmann dataset

- Benchmark dataset
 - 9 actions
 - 9 subjects

Method	Accuracy
Ours (MM-hCRF)	100%
Ours (CL-hCRF)	97.2%
Jhuang & Poggio ICCV07	98.8%
Niebles & Fei-Fei BMVC06	72.8%

Inferred Part Labels

Visualization of Learned Model

Conditional Likelihood vs. Max-Margin

Weizmann dataset	Method	H = 6	H = 10	H = 20
	hCRF-CL	91.7	97.2	94.4
	hCRF-MM	97.2	100	97.2
КТН	Method	H = 6	H = 10	H = 20
dataset	hCRF-CL	78.5	87.6	75.1
	hCRF-MM	84.8	92.5	89.7

CL
$$\log \sum_{\mathbf{h}} p(Y = y^t, \mathbf{h} | \mathbf{x}^t)$$
 vs. $\log \sum_{\mathbf{h}} p(Y \neq y^t, \mathbf{h} | \mathbf{x}^t)$

$$\max_{\mathbf{h}} p(Y = y^t, \mathbf{h} | \mathbf{x}^t) > \max_{\mathbf{h}} p(Y \neq y^t, \mathbf{h} | \mathbf{x}^t)$$

Outline

- Combined parts and whole model
 - Wang and Mori NIPS 2008, CVPR 2009

Latent pose estimation
 – Yang et al. CVPR 2010

"Bag-of-words" sequence model – Wang and Mori T-PAMI 2009

Goal

- Action recognition from still images
 - News/sports image retrieval and analysis
 - An important cue for video-based action recognition

Previous work

Global template-based representation

e.g. Wang et al. CVPR06, Ikizler-Cinbis et al. ICCV09

Pose estimation + action recognition

e.g. Ramanan and Forsyth NIPS03, Ferrari et al. CVPR09

SFU Vision and Media Lab

Discriminative Pose

- Not all elements of pose are equally important
- Develop integrated learning framework to estimate pose for action recognition

Pose Representation

- We use a coarse non-parametric pose representation
 - An action-specific variant of the *poselet* [Bourdev & Malik ICCV09]
- A *poselet* is a set of patches not only with similar pose configuration, but also from the same action class.

SFU Vision and Media Lab

Poselets

• Poselets obtained by clustering ground-truth joint positions of body parts for each action

- Develop a scoring function $H(I, Y; \Theta)$
 - Should have high score for correct action label \boldsymbol{Y}
 - Low score for other action labels
 - Model parameters Θ

Large score for $H(I, Y = Running; \Theta)$

Small score for $H(I, Y = Sitting; \Theta)$

Model Details I

Action Label

 l_1

 l_0

Pose

Relative body part locations

Image

 l_2

Model Details II

Model Details III

SFU Vision and Media Lab

Full Model

Model parameters learned using max-margin

SFU Vision and Media Lab

Experiments

- Still image action dataset
 - Five action categories
 - 2458 images total
 - Train using 1/3 of images from each category

Running	0.81	0.06	0.00	0.03	0.10
Walking	0.38	0.46	0.02	0.00	0.13
PlayGolf	0.34	0.09	0.27	0.04	0.25
Sitting	0.11	0.05	0.02	0.61	0.22
Dancing	0.31	0.13	0.02	0.07	0.47
7	Running	Walking	PlayGolf	Sitting	Dancing

Baseline – HOG/SVM: 52% per class accuracy

Running	0.66	0.08	0.07	0.07	0.13
Walking	0.24	0.48	0.12	0.01	0.15
PlayGolf	0.10	0.03	0.65	0.03	0.18
Sitting	0.02	0.01	0.06	0.79	0.13
Dancing	0.15	0.08	0.12	0.12	0.53
Ā	Running	Walking	PlayGolf	Sitting	D _{ancing}

Ours – Latent Pose: 62% per class accuracy

Visualization of latent pose

Successful classification examples

Unsuccessful classification examples

Outline

- Combined parts and whole model
 - Wang and Mori NIPS 2008, CVPR 2009

Latent pose estimation
– Yang et al. CVPR 2010

"Bag-of-words" sequence model
Wang and Mori T-PAMI 2009

"Bag-of-Words" Models

- Bag of Words + Topic Models in Computer Vision
 - Scenes: Fei-Fei & Perona CVPR'05
 - Objects: Sivic et al. ICCV'05, Fergus et al. ICCV'05, Russell et al. CVPR'06
 - Actions: Niebles et al. BMVC'06
 - Human Poses: Bissaco et al. NIPS'06

- No temporal info
 - Classify each video frame independently
 - e.g., Efros et al. 03, Shechtman & Irani 05, Fathi & Mori 08

?-:-:-:-:-:-:-:

- Strong temporal info
 - Use hidden Markov Model or grammar on top of video frames
 - e.g. Bobick & Ivanov 98

- Our work is somewhere in between
 - Use bag of frames representation
 - Capture some temporal structure (co-occurrences of actions)
 - Simpler than full temporal models

- Our work is somewhere in between
 - Use bag of frames representation
 - Capture some temporal structure (co-occurrences of actions)
 - Simpler than full temporal models

Bag-of-Words Sequence Model

Codebook Formation

Semi-Latent Dirichlet Allocation

Learning is easier due to decoupling of model parameters cf. Blei et al. JMLR 2003

Experiments: KTH dataset

- Benchmark dataset
 - 6 actions
 - 25 subjects
 - 4 scenarios

Method	Accuracy	boxing	0.94	0.02	0.02	0.00	0.00	0.01
Ours (sLDA)	91.2%	handclapping	0.00	0.98	0.02	0.00	0.00	0.00
Liu & Shah CVPR08	94.2%	handwaving	0.00	0.00	1.00	0.00	0.00	0.00
Jhuang and Poggio ICCV07	91.7%	jogging	0.00	0.00	0.00	0.86	0.11	0.03
Niebles & Fei-Fei BMVC06	81.5%	running	0.01	0.00	0.00	0.26	0.71	0.02
	01.070	walking	0.00	0.00	0.00	0.01	0.01	0.98
Schuldt & Laptev ICPR04	71.7%	2	Doxing	handclapp	handwavin	^{ioggi} ng	running	Walking

Experiments: Soccer Dataset

- Real actions, moving camera, poor video
- 8 classes of actions
- 4500 frames of labeled data

Experiments: Irregularity detection

- sLDA is full probabilistic model
- Can detect most unusual sequences via likelihood
 - Sequences with lowest likelihood under model shown

Conclusion

- Structured models
 - Whole versus parts
 - Learning criterion: conditional likelihood vs. maxmargin learning
 - Semantically meaningful parts
 - Latent human pose estimation for action recognition
 - Temporal structure
 - Bag-of-frames
 - Probabilistic model

Acknowledgements

Mani Ranjbar

Yang Wang

Tian Lan

Weilong Yang

Mark Bayazit

Alex Couture-Beil

Thank you!

Bahman Yari Saeed Khanloo

Ferdinand Stefanus

