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The Mission
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* 405 g, 29cm

* 6 rotors provide superior thrust-
weight performance

» Top speed is 10m/s, maximum pitch
angle of vehicle is 22°

* Maximum altitude during mission
profile is 50m

* Flight time is 10-12 minutes




» Payload is GPS/IMU/compass/
pressure sensor, electronics and
microprocessor, datalink transmitter
(900 MHz), camera and analog video
transmitter (2.4 GHz).

» Onboard electronics provide attitude
stabilization and GPS waypoint
control using state estimation at 1000
Hz.

» Datalink, video antennas below
frame, GPS/IMU/compass above
frame

» Camera field-of-view was 90°, and

could be pitched from 0° (forward
looking) to 90° (straight down)/
















Attitude and
Position Estimation

* Roll and pitch estimated using
onboard IMU

* Yaw, X, Y Z estimated using
onboard range sensors

Hokuyo URG

e 4m maximum
range
* 10Hz scan rate
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Model-uncertainty Planning

« Acting in a world in which the system has limited knowledge of the
state, model of the system, or a map of the world

« Efficient inference
— Where am 1?
— What is around me?
— What do human team-mates want?

« Efficient planning
— How to plan trajectories robust to sensor limitations?
— How to explore the world?
— How to work with human team-mates?



Sensor Limitations and Indoor Flight

* Given:
— Map of environment

— Start, goal locations

* Plan path for autonomous helicopter navigation
— Sensor limitations




Motion Planning

Goal: shortest path, subject
to kinematic and
environmen tal constraints




Motion Planning in High
Dlmen3|onal Conflguratlon Spaces

Y Assumes a controller
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. Add edges between mutually-visible points
. Perform graph search




State vs. Information Space

g poor plan

execution




Motion Planning in Information Space

start

. Sample distributions where p(xe C_, )<e
. Add edges between points where
p(xe C,,)<e along path

3. Perform graph search



Problem: Edge Construction

e e S

* Need ug.t such that p(x|uy.1) = p(X’)
« Possible solution: sample waypoints, use forward
simulation to compute full posterior




Example Belief Roadmap




Problem: Edge Construction

Initial Ug-1:Zg-T

Conditions

Different initial Uo.T:40.T (7
Conditions *

* Need to perform forward simulation (and belief
prediction) along each edge for every start state

« Computing minimum cost path of 30 edges: =100
seconds

* Not an issue for single queries: clearly a problem for
multi-query planning



Multi-Step Update as One-Step

EKF Covariance Update
Control: , =GX,_,G' +R
. She ATV
Measurement: Zt = (Zt +HQH )

Multi-Step Updates One-Step Update
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Solution: Decomposition

« Key idea: factor the covariance
matrix

>=BC™
* Motion update
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Solution: Decomposition

« Key idea: factor the covariance

matrix 1
> =BC
 Measurement update
2y = BtCt_l
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Solution: Decomposition

* One-step transfer function for the
covariance:

0o 1o G~
| M, |G, RG,"

g

« (To recover covariance, ¥ = BC1)

 This trick is not new.

— Kaileth et al., Linear State Estimation.
— Mourikis and Roumeliotis, 2006.




The Belief Roadmap Algorithm

start |
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. Sample means from C
transfer functions

build graph and

free’

2. Propagate covariances by performing graph
search



Search Time (s)

The Belief Roadmap

Search Time vs. Search Tree Depth

10% ¢
- /x__;:\;___._’f____x_*--——x---‘\‘
10' | xg R
* % Search with Standard EKF Updates
100 L O Search with One-Step EKF Updates
| C [ O ™) (:3 O T
-1 o 9] J@ ::1 - _":______u___— —= .
107" o B° @’6% -
: o BE 60 o =
I o 88 o)
107 o) / S
: &/
: :. @ IlII
1071 |
|
107 | | | . | |
0 5 10 15 20 25 30

Search Tree Depth






Improving Sampling

Uniform Sampling
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Sensor-Uncertainty Sampling




Running Time

tr(X) Build time Search time
PRM 16.046 0.036 .001
BRM, Uniform 4.223 18.920 0.039
Sampling
BRM, Sensor-
Uncertainty 1.094 25.589 0.032

Sampling







Problem: the noisy sensor
confuses mines and rocks

iU




RockSample

Target #2 Target is not
Given cost of flight, is a mine a mine
reward of disposing of
actual mines... i I r e

Search for a sequence of
paths through the graph
that maximize expected
reward

multinomial g,

Problem: posterior
distribution is not ﬁ/
deterministic

Problem: distribution is '% 7
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Posterior Belief Distribution

e l UOT*

Posterior belief no longer deterministic

Action sequence leads to a distribution over posterior
beliefs

Compute expected reward over distribution of distributions
Compare [R(b’|u’0:T)db’ > |R(b|u0:T)db

Analytic solution exists for linear Gaussian systems : O(n)

— Approximate version available for exponential family distributions
l.e., Poisson, Bernoulli, multinomial, Dirichlet, etc.



RockSample

« Search for a sequence of
paths through the graph
that maximize expected
reward...

* Problem: graph may not
contain optimal trajectory
— lteratively refine graph

— Provable convergence to
bounded optimal policy

* Planning under
Uncertainty with Macro-
Actions (PUMA)




Experimental Performance

Problem Algorithm Ave. rewards C_)nlme C_)fflme
time(s) time (s)
SARSOP 12.10 0.00 10000
Naive FS 9.56 3.36 0.00
ISRS (8,5)
Hand-coded SCP | 19.71 0.74 0.00
PUMA 17.38 162.48 0.00

¢ ISRS: 2048 states

» Largest version of this problem solved so
far: 104x230 states, 1-2 minutes per step




Model-uncertainty Planning

Robust
Control
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Information Dynamics

Initial
Conditions

Uo.-1:Z0:T

« How do | predict the posterior efficiently?
— Choose the right matrix inversion lemma

« Can | make the posterior small efficiently without
explicit prediction?
— Machine learning



Reinforcement Learning

* |nput:
— Current and goal vehicle pose
— Current map estimate

e Output

— Trajectory that minimizes
expected cost

Learn actions that minimize
expected cost in practice

Core algorithm: stochastic
function approximation




Map Error Minimization

Shortest Path Explorer Learned Explorer

— True trajectory — True trajectory
- - Scan matched trajectory - - Scan matched trajectory




Map Error Minimization

Shortest Path Explorer Learned Explorer
2.5 ' ' ' ' ' ' : ,
- - rotational velocity 2.3f - - rotational velocity |
— error — error
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Previous state of the art: computing each exploration action takes 30 minutes

Learned controller: computing each exploration action takes milliseconds
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NOTE: Internal wall and obstacle placement is purely notional.
— Actual placements and numbers of rooms may differ.
— No entry door will be less than 1 meter in width.
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Summary

Robust, long-term autonomy in large-scale
environments

Planning algorithms for worlds in which we have
limited knowledge of the state, model of the
system, or a map of the world

Key Issue: Control of Information

Technical approaches:
— Understanding how information propagates
— Machine learning



