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• 405 g, 29cm
• 6 rotors provide superior thrust-

weight performance
• Top speed is 10m/s, maximum pitch 

angle of vehicle is 22°
• Maximum altitude during mission 

profile is 50m
• Flight time is 10-12 minutes



• Payload is GPS/IMU/compass/
pressure sensor, electronics and 
microprocessor, datalink transmitter 
(900 MHz), camera and analog video 
transmitter (2.4 GHz).

• Onboard electronics provide attitude 
stabilization and GPS waypoint 
control using state estimation at 1000 
Hz.

• Datalink, video antennas below 
frame, GPS/IMU/compass above 
frame

• Camera field-of-view was 90°, and 
could be pitched from 0° (forward 
looking) to 90° (straight down)/





Robustness to Lost GPS in EOD 
Robot



Mission Execution





Attitude and 
Position Estimation

Hokuyo Laser
Rangefinder

IMU

Laser-deflecting 
mirrors for altitude

Gumstix
processor

Heli internal 
processor

Hokuyo URG

• 4m maximum 
range

• 10Hz scan rate

• Roll and pitch estimated using 
onboard IMU

• Yaw, X, Y Z estimated using 
onboard range sensors
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Maximum 
range readings
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Model-uncertainty Planning
• Acting in a world in which the system has limited knowledge of the 

state, model of the system, or a map of the world

• Efficient inference
– Where am I?
– What is around me? 
– What do human team-mates want? 

• Efficient planning
– How to plan trajectories robust to sensor limitations?
– How to explore the world?
– How to work with human team-mates?



Sensor Limitations and Indoor Flight

• Given:
– Map of environment

– Start, goal locations

• Plan path for autonomous helicopter navigation
– Sensor limitations



Motion Planning

start

GOAL

Goal: shortest path, subject 
to kinematic and 
environmental constraints



Motion Planning in High 
Dimensional Configuration Spaces

start

GOAL

1. Sample poses in Cfree
2. Add edges between mutually-visible points
3. Perform graph search

1. Sample poses in Cfree
2. Add edges between mutually-visible points
3. Perform graph search

Assumes a controller 
exists to transfer from xt
to xt+1



State vs. Information Space

• Large covariances can lead to poor plan 
execution

• Large covariances can lead to poor plan 
execution



GOAL

start

Motion Planning in Information Space

1. Sample distributions where p(x∈ Cobst)<ε
2. Add edges between points where 

p(x∈ Cobst)<ε along path
3. Perform graph search

1. Sample distributions where p(x∈ Cobst)<ε
2. Add edges between points where 

p(x∈ Cobst)<ε along path
3. Perform graph search



Problem: Edge Construction

• Need u0:T such that p(x|u0:T) = p(x’)
• Possible solution: sample waypoints, use forward 

simulation to compute full posterior

?



Example Belief Roadmap



Problem: Edge Construction

• Need to perform forward simulation (and belief 
prediction) along each edge for every start state

• Computing minimum cost path of 30 edges: ≈100 
seconds

• Not an issue for single queries: clearly a problem for 
multi-query planning

u0:T,z0:T

u0:T,z0:T ?

Initial 
Conditions

Different initial 
Conditions



Multi-Step Update as One-Step
EKF Covariance Update

Control:

Measurement: ( ) 111

1
−−−

−

+Σ=Σ

+Σ=Σ
T

tt

T
tt

HHQ

RGG

Control Updates

Measurement Updates

Σ0 Σ1 Σn

Z1 Z2 …

…

Multi-Step Updates

Σ0 Σn

Z*

U*

One-Step Update



Solution: Decomposition

• Key idea: factor the covariance 
matrix

• Motion update
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Solution: Decomposition

• Key idea: factor the covariance 
matrix

• Measurement update
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Solution: Decomposition
• One-step transfer function for the 

covariance:

• (To recover covariance, Σ = BC-1)
• This trick is not new.

– Kaileth et al., Linear State Estimation.
– Mourikis and Roumeliotis, 2006.
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GOAL

start

The Belief Roadmap Algorithm

1. Sample means from Cfree, build graph and 
transfer functions

2. Propagate covariances by performing graph 
search

1. Sample means from Cfree, build graph and 
transfer functions

2. Propagate covariances by performing graph 
search
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The Belief Roadmap



Improving Sampling



Improving Sampling

Uniform Sampling Sensor-Uncertainty Sampling



Running Time

0.03225.5891.094
BRM, Sensor-
Uncertainty 
Sampling

0.03918.9204.223BRM, Uniform 
Sampling

.0010.03616.046PRM

Search timeBuild timetr(Σ)





• Goal: Dispose of the mines
• Problem: the noisy sensor 

confuses mines and rocks



RockSample
• Given cost of flight, 

reward of disposing of 
actual mines…

• Search for a sequence of 
paths through the graph 
that maximize expected 
reward

• Problem: distribution is 
multinomial

• Problem: posterior 
distribution is not 
deterministic 

Target is not 
a mine

Target #2 
is a mine



Posterior Belief Distribution

• Posterior belief no longer deterministic
• Action sequence leads to a distribution over posterior 

beliefs
• Compute expected reward over distribution of distributions
• Compare ∫R(b’|u’0:T)db’ > ∫R(b|u0:T)db

• Analytic solution exists for linear Gaussian systems : O(n)
– Approximate version available for exponential family distributions

i.e., Poisson, Bernoulli, multinomial, Dirichlet, etc.

u0:T,z0:T



RockSample
• Search for a sequence of 

paths through the graph 
that maximize expected 
reward…

• Problem: graph may not 
contain optimal trajectory
– Iteratively refine graph
– Provable convergence to 

bounded optimal policy 

• Planning under 
Uncertainty with Macro-
Actions (PUMA)



Experimental Performance

• ISRS: 2048 states
• Largest version of this problem solved so 

far: 104x230 states, 1-2 minutes per step

Problem Algorithm Ave. rewards Online 
time(s)

Offline 
time (s)

ISRS (8,5)

SARSOP 12.10     ±0.26 0.00 10000

Naïve FS 9.56       ±1.08 3.36 0.00

Hand-coded SCP 19.71     ±0.63 0.74 0.00

PUMA 17.38     ± 1.41 162.48 0.00
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Model-uncertainty Planning



Information Dynamics

• How do I predict the posterior efficiently?
– Choose the right matrix inversion lemma

• Can I make the posterior small efficiently without 
explicit prediction?
– Machine learning

u0:T,z0:TInitial 
Conditions



Reinforcement Learning

• Input:
– Current and goal vehicle pose
– Current map estimate

• Output
– Trajectory that minimizes 

expected cost

f

• Learn actions that minimize 
expected cost in practice

• Core algorithm: stochastic 
function approximation 

R3 Rn

agMsf →××:

R3



Map Error Minimization
Shortest Path Explorer Learned Explorer



Map Error Minimization

Previous state of the art: computing each exploration action takes 30 minutes

Learned controller: computing each exploration action takes milliseconds

Shortest Path Explorer Learned Explorer

























Anticipated 
dimension: 30m













Summary
• Robust, long-term autonomy in large-scale 

environments

• Planning algorithms for worlds in which we have 
limited knowledge of the state, model of the 
system, or a map of the world

• Key Issue: Control of Information
• Technical approaches:

– Understanding how information propagates
– Machine learning


