Planning and Inference for Micro-air Vehicle Flight in GPS-Denied Environments

Nicholas Roy Tuesday, June 1st, 2010

The Mission

The Mission

- Payload is GPS/IMU/compass/ pressure sensor, electronics and microprocessor, datalink transmitter (900 MHz), camera and analog video transmitter (2.4 GHz).
- Onboard electronics provide attitude stabilization and GPS waypoint control using state estimation at 1000 Hz.
- Datalink, video antennas below frame, GPS/IMU/compass above frame
- Camera field-of-view was 90°, and could be pitched from 0° (forward looking) to 90° (straight down)/

Attitude and Position Estimation

- Roll and pitch estimated using onboard IMU
- Yaw, X, Y Z estimated using onboard range sensors

Hokuyo URG

- 4m maximum range
- 10Hz scan rate

Control Models

Model-uncertainty Planning

 Acting in a world in which the system has limited knowledge of the state, model of the system, or a map of the world

- Efficient inference
 - Where am I?
 - What is around me?
 - What do human team-mates want?
- Efficient planning
 - How to plan trajectories robust to sensor limitations?
 - How to explore the world?
 - How to work with human team-mates?

Sensor Limitations and Indoor Flight

- Given:

- Start, goal locations

- Plan path for *autonomous* helicopter navigation
 - Sensor limitations

Motion Planning

Motion Planning in High Dimensional Configuration Spaces

State vs. Information Space

Motion Planning in Information Space

- Need $u_{0:T}$ such that $p(x|u_{0:T}) = p(x')$
- Possible solution: sample waypoints, use forward simulation to compute full posterior

Example Belief Roadmap

Problem: Edge Construction

- Need to perform forward simulation (and belief prediction) along each edge for every start state
- Computing minimum cost path of 30 edges: ≈100 seconds
- Not an issue for single queries: clearly a problem for multi-query planning

Multi-Step Update as One-Step

EKF Covariance Update

Control: $\overline{\Sigma}_{t} = G\Sigma_{t-1}G^{T} + R$ Measurement: $\Sigma_{t} = \left(\overline{\Sigma}_{t}^{-1} + HQ^{-1}H^{T}\right)^{-1}$

Solution: Decomposition

- Key idea: factor the covariance matrix $\Sigma = BC^{-1}$
- Motion update

$$\overline{\Sigma}_{t} = \overline{E}_{t} \overline{D}_{t}^{-1}$$

$$\begin{bmatrix} \overline{D}_{t} \\ \overline{E}_{t} \end{bmatrix} = \begin{bmatrix} 0 & G_{t}^{-T} \\ G_{t} & R_{t} G_{t}^{-T} \end{bmatrix} \begin{bmatrix} B_{t-1} \\ C_{t-1} \end{bmatrix}$$

Solution: Decomposition

- Key idea: factor the covariance matrix $\Sigma = BC^{-1}$
- Measurement update

$$\Sigma_{t} = B_{t}C_{t}^{-1}$$

$$\begin{bmatrix} B_{t} \\ C_{t} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & M_{t} \end{bmatrix} \begin{bmatrix} \overline{D}_{t} \\ \overline{E}_{t} \end{bmatrix}$$

Solution: Decomposition

• One-step transfer function for the covariance:

$$\zeta_{t} = \begin{bmatrix} 0 & I \\ I & M_{t} \end{bmatrix} \begin{bmatrix} 0 & G_{t}^{-T} \\ G_{t} & R_{t} G_{t}^{-T} \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} B_{T} \\ C_{T} \end{bmatrix} = \left(\prod_{t=0}^{T} \zeta_{t}\right) \begin{bmatrix} B_{0} \\ C_{0} \end{bmatrix}$$

- (To recover covariance, $\Sigma = BC^{-1}$)
- This trick is not new.
 - Kaileth et al., Linear State Estimation.
 - Mourikis and Roumeliotis, 2006.

The Belief Roadmap Algorithm

The Belief Roadmap

Improving Sampling

Uniform Sampling

Sensor-Uncertainty Sampling

Running Time

	$tr(\Sigma)$	Build time	Search time
PRM	16.046	0.036	.001
BRM, Uniform Sampling	4.223	18.920	0.039
BRM, Sensor- Uncertainty Sampling	1.094	25.589	0.032

RockSample

- Given cost of flight, reward of disposing of actual mines...
- Search for a sequence of paths through the graph that maximize expected reward
- Problem: distribution is multinomial _____
- Problem: posterior distribution is not deterministic

- Posterior belief no longer deterministic
- Action sequence leads to a distribution over posterior beliefs
- Compute expected reward over distribution of distributions
- Compare $\int R(b'|u'0:T)db' > \int R(b|u0:T)db$
- Analytic solution exists for linear Gaussian systems : O(n)
 - Approximate version available for exponential family distributions i.e., Poisson, Bernoulli, multinomial, Dirichlet, etc.

RockSample

- Search for a sequence of paths through the graph that maximize expected reward...
- Problem: graph may not contain optimal trajectory
 - Iteratively refine graph
 - Provable convergence to bounded optimal policy
- Planning under Uncertainty with Macro-Actions (PUMA)

Experimental Performance

Problem	Algorithm	Ave. rewards		Online time(s)	Offline time (s)
ISRS (8,5)	SARSOP	12.10 ±0.26		0.00	10000
	Naïve FS	9.56 ±1.08		3.36	0.00
	Hand-coded SCP	19.71 ±0.63		0.74	0.00
	PUMA	17.38 ± 1.41		162.48	0.00

- ISRS: 2048 states
- Largest version of this problem solved so far: 10⁴x2³⁰ states, 1-2 minutes per step

Model-uncertainty Planning

- How do I predict the posterior efficiently?
 - Choose the right matrix inversion lemma
- Can I make the posterior small efficiently without explicit prediction?
 - Machine learning

Reinforcement Learning

- Input:
 - Current and goal vehicle pose
 - Current map estimate
- Output
 - Trajectory that minimizes expected cost

- Learn actions that minimize expected cost in practice
- Core algorithm: stochastic function approximation

Map Error Minimization

Shortest Path Explorer

Map Error Minimization

Previous state of the art: computing each exploration action takes 30 minutes Learned controller: computing each exploration action takes milliseconds

Autonomous Navigation

□ No entry door will be less than 1 meter in width.

Autonomous Entry

Summary

- Robust, long-term autonomy in large-scale environments
- Planning algorithms for worlds in which we have limited knowledge of the state, model of the system, or a map of the world
- Key Issue: Control of Information
- Technical approaches:
 - Understanding how information propagates
 - Machine learning