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Motivation (1)

Common image processing tasks De-noising: Remove noise from an
image Segmentation: Partition the
image into object and background Optic flow: Estimate the apparent
motion between two images Registration: Transform the
source image to match the
template image
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Motivation (2)

Image processing tasks as function estimation De-noising: Find a smooth
approximation to the noisy image
in the space of images Segmentation: Find a smooth
closed curve between object and
background Optic flow: Compute a smooth
displacement field between two
images Registration: Estimate a smooth
and realistic deformation field that
matches the corresponding points
in template and source images
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General variational framework Goal: To determine an unknown function upxq satisfying
given constraints The constraints are formulated in the form of an energy
functional as follows:

E rus � »
Ω

Dpuqloomoon
Data

� Spuqloomoon
Smoothing

� T puqloomoon
Domain

dx Using calculus of variations, determine the unknown
function as the argument that minimizes the above energy:

u� � argmin
uPU E rus



Motivation (3)

Variational image de-noising

Consider the variational de-noising of some noisy image I0, i.e., find the
minimizer Iα of:

E rIs � »
Ω

pI � I0q2looomooon
data

�αΨp||∇u||2qlooooomooooon
smoothing

dx In the above the, first term (data term, similarity term, fidelity term)
encourages similarity to the original noisy image Second term (smoothness term, regularizer, penalizer) encodes the
smoothness constraint ! α ¡ 0 is the regularization parameter (smoothness weight)
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Motivation (4)

Variational image de-noising . . .

Now, we seek a minimizer of the functional E rIs:
Iα � argmin

IPI E rIs � argmin
IPI »

Ω

pI � I0q2 � αΨp||∇u||2qdx

Iα then corresponds to the non-noisy or smoothed image

Calculus of variations gives the minimum of E rIs as the solution of the
Euler-Lagrange equation:

I � I0�αdivpΨ1p||∇u||2q∇uq � 0ùñ I � I0

α
� divpΨ1p||∇u||2q∇uq � 0

This solved using gradient descent as:BIBt
� divpΨ1p||∇u||2q∇uq � I � I0

α
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Motivation (5)

Variational image de-noising . . .

Common choices for the penalizer: Quadratic: Ψps2q � s2 Perona-Malik [Perona et al., 1990]: Ψps2q � λ2plogp1� s2

λ2 qq Charbonnier [Charbonnier et al., 1994]: Ψps2q � 2λ2
b

1� s2

λ2 � 2λ2 Better (edge-preserving) smoothing by the Perona-Malik regularizer !
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What’s next ? Other applications in imaging: Optic flow,
Segmentation, Registration General framework for the numerical solution of
variational minimization . . . But first formal introduction to the
calculus of variations

Noisy image Perona-Malik (α � 5) Quadratic (α � 5)



Introduction to calculus of variations (1)

Functionals A functional is a correspondence that assigns a real number to each function
belonging to a class The expression

E ry s � »
Ω

F rx, ypxq,∇ypxqs dx

defines a functional E ry s, where ypxq P D1pΩq For example, we have already seen the functional for de-noising an image I0,
where:

F rI,∇Is � pI � I0q2 � αΨp||∇I||2q
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Introduction to calculus of variations (2)

Minimization of functionals

Consider an increment hpxq in the “independent” variable ypxq, we can then
calculate the increment in the function E ry s as:

△E ry s � E ry � hs � E ry s � »
Ω

rF px , y � h,∇y �∇hq � F px , y ,∇yqs dx

Using Taylor’s theorem to expand the integrand, we obtain

△E ry s � »
Ω

rFy px , y ,∇hqh � F∇y px , y ,∇yqT∇hs dx�Ophq
Ignoring the higher order terms and simplifying the notation we get the first
variation of the above functional as:

δE ry s � »
Ω

rFy h � F T
∇y∇hs dx
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Introduction to calculus of variations (3)

Minimization of functionals . . .

The necessary integral condition for the extremum is

δE ry s � »
Ω

rFy h � F T
∇y∇hs dx � 0 � h P D1pΩq

We then obtain the corresponding Euler-Lagrange equation as:

Fy � divpF∇y q � 0

This also gives rise to the so-called natural (Neumann) boundary conditions:

nT F∇y � 0

(see pages 152� 154 [Gelfand et al., 1963])
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Numerical methods for variational minimization (1)

Method 1: Gradient descent Set up a gradient descent evolution and discretize the resulting parabolic
equation using Finite Differences (FD):ByBt

� �pFy � divpF∇y qq
Using a time explicit scheme, in 2D for the above we have:

y
pk�1q
i,j � y

pkq
i,j

△t
� �pFy � divpF∇y qqpkqi,j� results in a set of N (number of grid points) linear equations in general� the discretization of the grid is usually UNIFORM, i.e. for i � t1, 2, . . .Lu,

j � t1, 2, . . .W u we have xi�1,j � xi,j �△L, xi,j�1 � xi,j �△W
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Numerical methods for variational minimization (2)

Method 2: Time-lagged non-linearity Using Finite Differences (FD) discretize the elliptic equation:pFy � divpF∇y qqi,j � 0� aT
i,jpyqy� bi,jpyq � 0

where aT
i,jp.q, bi,jp.q can be non-linear y � tyi,ju, a � tai,ju� results in a set of N (number of grid points) non-linear equations� the discretization of the grid is usually UNIFORM, i.e. for i � t1, 2, . . .Lu,

j � t1, 2, . . .W u we have xi�1,j � xi,j �△L, xi,j�1 � xi,j �△W Solve the above set of non-linear equations as a series of set of linear
equations To obtain the current estimate yk�1 approximate the non-linear terms using
the previous estimate yk and obtain a linear system of the following form:

aT
i,jpyk

i,jqyk�1
i,j � bi,jpyk

i,jq
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Numerical methods for variational miminization (3)

Method 3: Finite Element Method Solve integral extremum condition using the Finite Element Method (FEM)

δE ry s � »
Ω

rFy h � F T
∇y∇hs dx � 0 � h P D1pΩq

approximate y using nodal basis functions:

ypxq � Ņ

n�1

ypPnqφnpxq � x P R
L�W� Setting h � φi , i � t1, 2, . . . ,Nu, we get N linear equations� the discretization of the grid is usually NON-UNIFORM adapted to the

problem domain and N    L�W
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Applications of variational methods in imaging (1)

Segmentation

Ω2 = 1−H(Φ) Ω

µ2

∂Ω
Ω1 = H(Φ)

µ1 Chan-Vese variational segmentation model [Chan et al., 2001]:

E rΦs � »
Ω

�
HpΦqpI � µ1q2 � p1� HpΦqqpI � µ2q2loooooooooooooooooooooooomoooooooooooooooooooooooon

data

� ν ||∇HpΦq||loooomoooon
smoothing



dx Φ is the level-set function, the segmentation boundary BΩ � tx |Φpxq � 0u Separate the image domain into two regions of maximally distinct average

intensities (µ1, µ2) while keeping the boundary length (||∇HpΦq||) small
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Applications of variational methods in imaging (2)

Segmentation . . .

 The gradient descent evolution equation is given by:BΦBt
� δpΦq�pI � µ2q2 � pI � µ1q2 � ν div

�
∇Φ||∇Φ||

 Region-based segmentation, NOT sensitive to initialization and noise Level-set representation easily handles topological changes
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Initialization t � 30 t � 100



Applications of variational methods in imaging (3)

Optic flow

 Optic flow refers to the apparent motion of the scene between two
consecutive image frames The goal is to compute the displacement field that maps the pixels in the
first image to their new locations in the second image We assume brightness constancy and small displacements (linearization) for
each pixel:|Ipx , y , tq � Ipx � u, y � v , t � 1q| � |Ixu � Iy v � It | � 0 1 equation 2 unknowns (u, v) at each pixel !
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(Images taken from [Bruhn, 2006])

Ipx , y , tq Ipx�u, y�v , t�1q Displacement field Color code



Applications of variational methods in imaging (4)

Variational optic flow method

E ru, v s � »
Ω

pIx u � Iy v � Itq2looooooooomooooooooon
data

�αΨp||∇u||2 � ||∇v ||2qlooooooooooomooooooooooon
smoothing

dx Data term penalizes deviations from brightness constancy (linearized) Smoothness term penalizes deviations from a smooth flow field.� Ψps2q � s2 :homogeneous flow field [Horn and Schunck, 1981]� Ψps2q � ?
s2 � ǫ2 :piecewise smooth flow field [Schnörr, 1994] Filling-in-effect: in homogeneous regions WITHOUT edges, Ix � Iy � 0ùñ Ixu � Iy v � It , i.e NO contribution of data term w.r.t pu, vq, smoothing

term propagates or “fills in” information from neighboring regions
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(Images taken from [Bruhn, 2009])

Filling-inEdge information



Applications of variational methods in imaging (5)

Variational optic flow method . . .

I2
x u � Ix Iy v � Ix It � αdivpD∇uq � 0

Ix Iyu � I2
y v � Iy It � αdivpD∇vq � 0

where D � Ψ
1p||∇u||2 � ||∇v ||2q� 2 non-linear Euler-Lagrange equations� Solved using the time-lagged non-linearity method The linear penalizer prevents smoothing over flow edges and hence preserves

discontinuities in the flow field
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(Images taken from [Bruhn, 2009])

Ipx , y , tq Ipx�u, y�v , t�1q Ψps2q � s2

(Quadratic)
Ψps2q � as2 � ǫ2

(Linear)



Applications of variational methods in imaging (6)

Image registration

 Similar to optic flow, estimate a realistic displacement (deformation) field
mapping corresponding pixels in the template image to the source image The source image is warped (based on the deformation field) using
interpolation to obtain the registered image Challenges: Large displacements, images from different modalities,
need realistic regularizers (smoothing terms)
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MRI-PET

CT-CT

(Images taken from [Du et al., 2006])

(Images taken from [Bruhn, 2009])

Template Source Registered



Applications of variational methods in imaging (7)

Image registration . . .

E ru, v s � � »r0,255s2 prI1,Î2s log
prI1,Î2s

prI1sprÎ2sloooooooooomoooooooooon
data

da db � α»
Ω

p||∇u||2 � ||∇v ||2qloooooooooomoooooooooon
smoothing

dx

p � ppa, bq Mutual information is used to compute the similarity between the two
different image modalities (data term NOT linearized) Solved using lagged non-linearity with image warping at each step, i.e

Î2
pkq � I2px � upkq, y � v pkqq
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(Images taken from [Heldmann et al., 2004])

Template (T1) Source (T2) Registered



Applications of variational methods in imaging (8)

Image registration . . .

E ru, v s � »
Ω

pI1 � Î2q2looomooon
data

�µ p||∇u||2 � ||∇v ||2qloooooooooomoooooooooon
smoothing

�pλ� µqpux � vy q2loooomoooon
elasticity

dx dy

where Î2 � I2px � u, y � vq Additional smoothing term based on elasticity theory, i.e., div
�

u
v

� � 0 (no
sources or sinks)
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(Images taken from [Wirtz et al., 2004])

Before registration After registration



Conclusions Many image processing tasks can be posed as variational problems,
which can then be solved in a common energy minimization
framework The variational formulations in general can be easily extended
(modified) to incorporate additional (different) set of constraints Efficient numerical techniques (both FD-based, FEM-based) exist
that can provide a fast and an accurate solution to the variational
minimization Other applications in imaging and vision include stereo, structure
from motion, shape estimation
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