Multi-View Stereo with the Profusion Camera

Ting Yu and Jochen Lang University of Ottawa

uOttawa

L'Université canadienne Canada's university

Université d'Ottawa | University of Ottawa

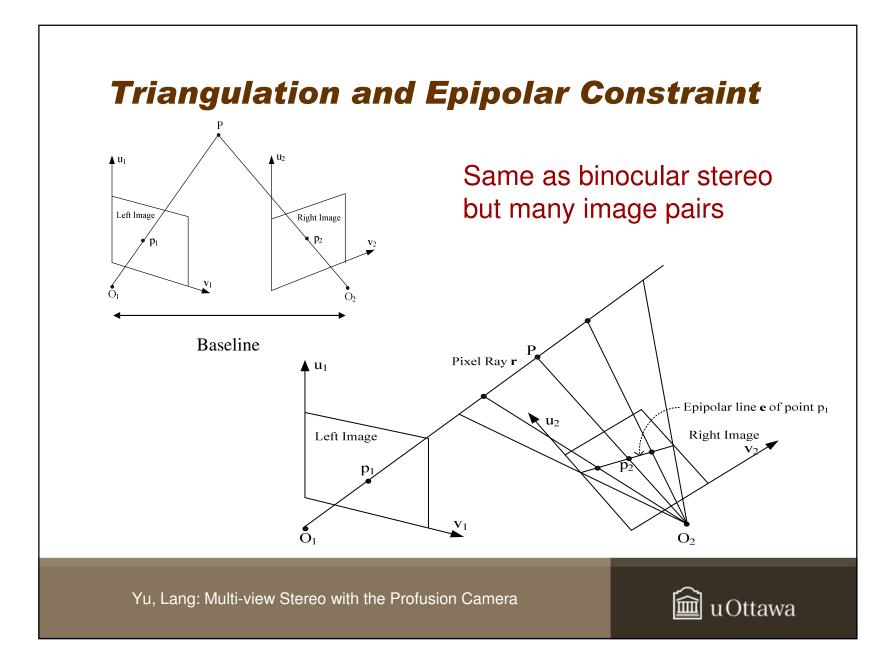
uOttawa.ca

Overview

- MVS approaches
- Profusion camera calibration
- Our Framework for the Generation of 3D Models
- Window-Based Matching
- Fusion of Volumes
- Results
- Future Work

Multi-view Stereo (MVS)

- Goal
 - Extract three-dimensional scene structure
- Principle
 - Match scene structure between many simultaneous images from calibrated cameras
 - Extension of two-view stereo; epipolar constraint between many camera pairs
 - 3D reconstruction based on triangulation



Basic MVS Approaches – Disparity score combination

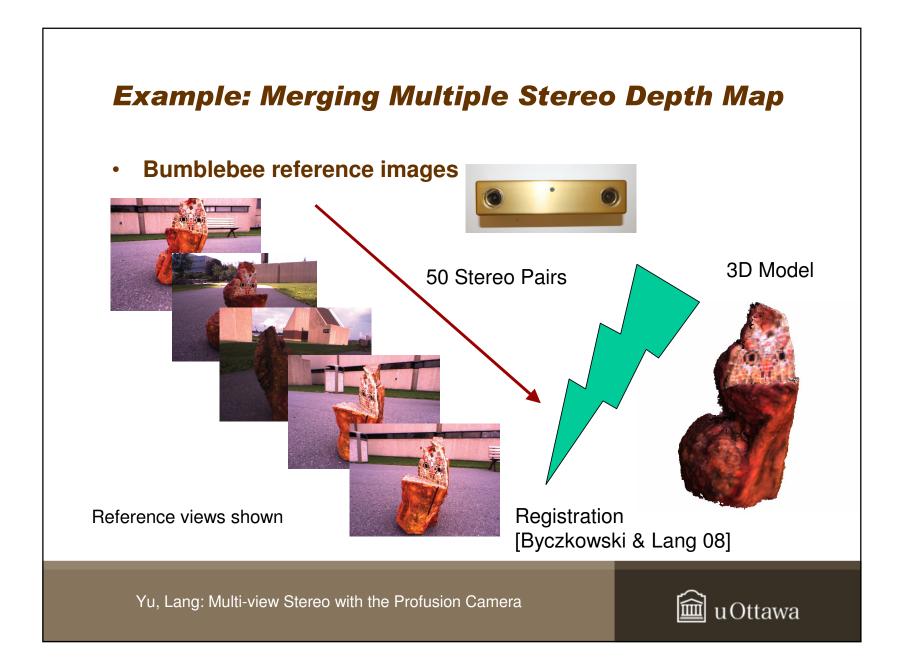
- CMU video-rate stereo machine [Kanade et al. '95]
 - 1. Pick reference view
 - 2. Calculate disparity scores with a window-based method to other views
 - 3. Sum the scaled disparity scores
- Difficulties:
 - Rectification not possible for general view configurations
 - Visibility changes not accounted for
 - Finds only a depth map (multi-baseline stereo)
 - but could work for the Profusion

Basic MVS Approaches – Merging depth maps

- Multi-view stereo revisited [Goesele et al. 06]
 - Calculate stereo between close image pairs
 - Merge depth maps similar to range scans in 3D modelling

• Difficulties

- Binocular stereo is noisy
- Filtering out noisy matches results in sparse depth maps
- Noisy and/or sparse depth maps are hard to register and merge



Simple MVS Approaches – Volumetric Reconstruction

- Plane sweeping [Collins 96] or Octrees [Szeliski 93] or Voxel coloring [Seitz & Dyer 97]
 - Determine scene volume
 - Split scene volume into voxels
 - Determine occupancy of each voxel based on photoconsistency
- Difficulties
 - Plane sweeping requires multiple passes for general camera configuration
 - Computationally expensive (use hierarchical approach)

MVS Algorithms [Seitz et al. '06]

• Taxonomy

- Scene representation
- Photo-consistency measure
- Visibility model
- Shape prior
- Reconstruction algorithms
 - Merging of depth maps
 - Volumetric MVS algorithm
 - Surface evolution
 - Surface growing
- Initialization requirements
- http://vision.middlebury.edu/mview lists currently 49 different methods

Surface Evolution

- Minimizing an error function to refine surface
 - Visual hull, e.g., [Laurentini 94], [Matusik et al. 00]
 - Space Carving [Kutulakos & Seitz 98]
 - Minimize difference between images and model reprojection, e.g., [Faugeras & Keriven 98], [Pons et al. 03]

Surface growing

- Seed surface with a few matches (e.g., with feature matching) and refine
 - E.g., [Morris and Kanade 00, Manessis at al. 00]

Camera Calibration

- Initial intrinsic and extrinsic parameters generated from Camera Calibration Toolbox [Bouguet]
- Final intrinsic and extrinsic parameters generated by using Sparse Bundle Adjustment (SBA) [Lourakis and Argyros 09]

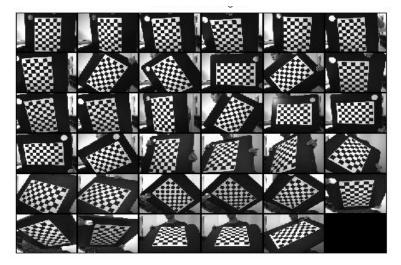
$$\min_{a_j, b_i} \sum_{i=1}^n \sum_{j=1}^m v_{ij} d(Q(a_j, b_i), X_{ij})^2$$

 $Q(a_j,b_i)$ is the predicted projection of point i in camera j. X_{ij} is the projection of point i in camera j. d(X,Y) is the Euclidean distance between pixel X and Y.

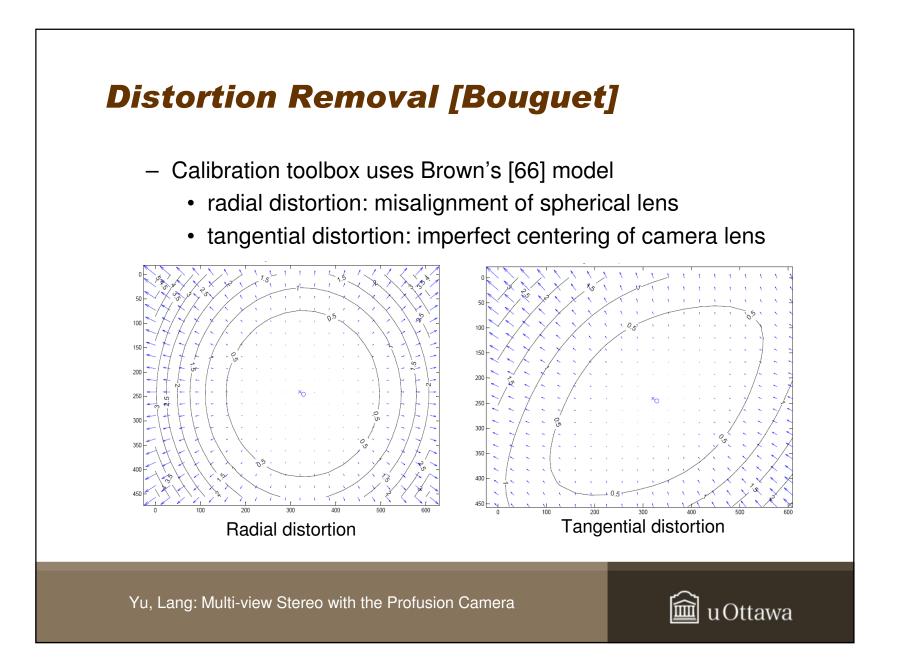
• After using the SBA optimization: the average projection error of 35,100 projection decreases from **3.78 to 0.1844 pixels**

Camera Calibration Images

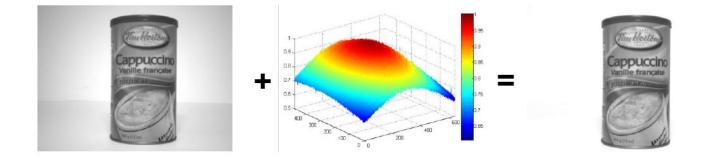
- Use a checkerboard grid pattern as known scene structure

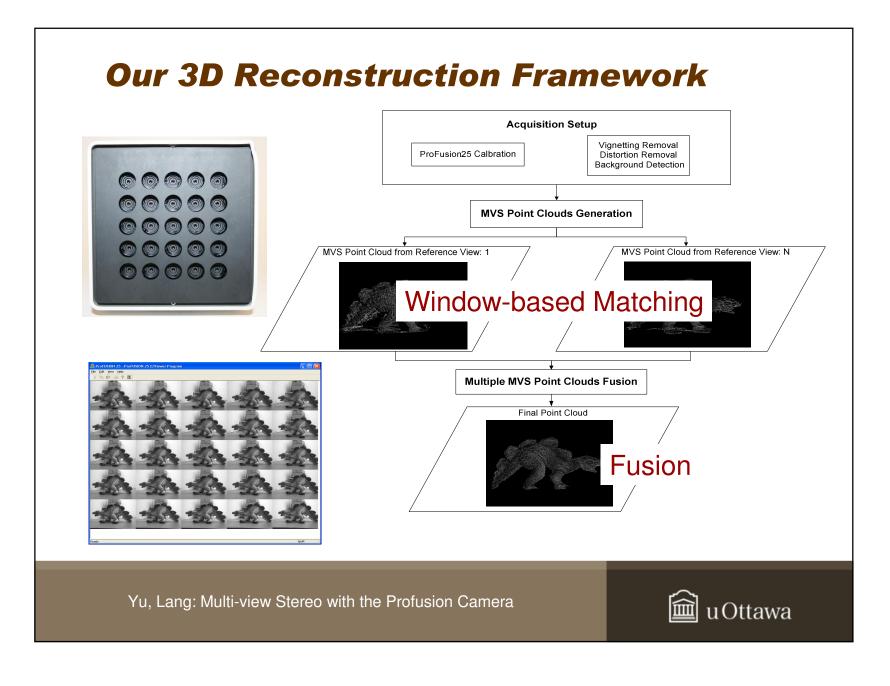


- Result: N intrinsic camera parameters and N motion estimation
- Use bundle adjustment to find a consistent calibration

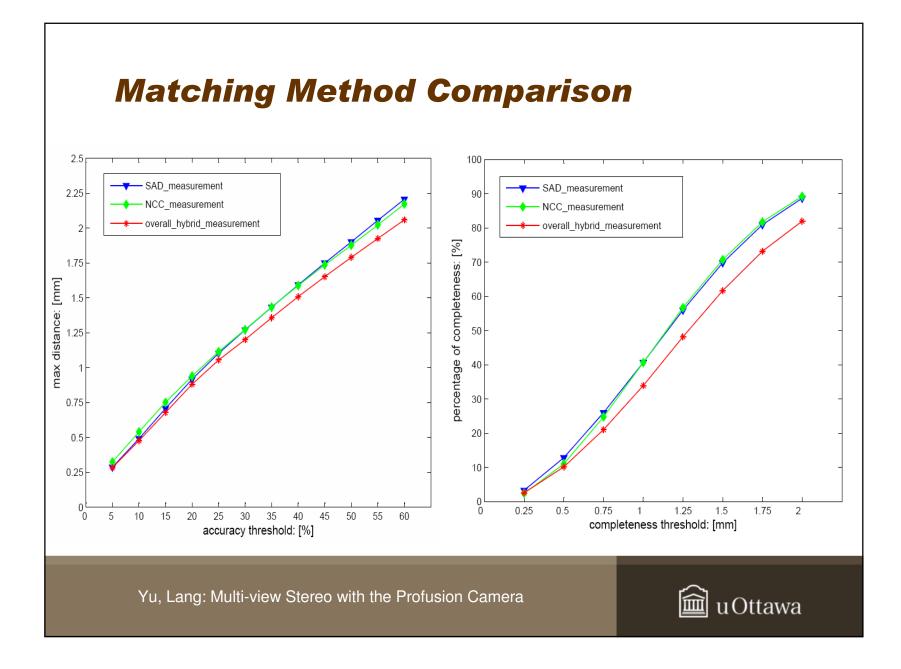


- Micro lenses of the ProFusion show pronounced vignetting
- Vignetting results in radial reduction of brightness
- Remove Vignetting with method by Fanaswala [2009]





- Intensity difference measures (SSD or SAD)
- Intensity distribution difference measures (NCC)
- Weaknesses (see also [Fua 93] for an evaluation)
 - SAD is sensitive to radiometric gain and bias
 - NCC fails for symmetrical color distribution, e.g. matching black and white windows
- Can use hybrid matching method



The Advantage of Fusion

From left to right

- 3D scanner (left column)
- MVS reconstruction without fusion (center column)
- MVS reconstruction with fusion (right column)

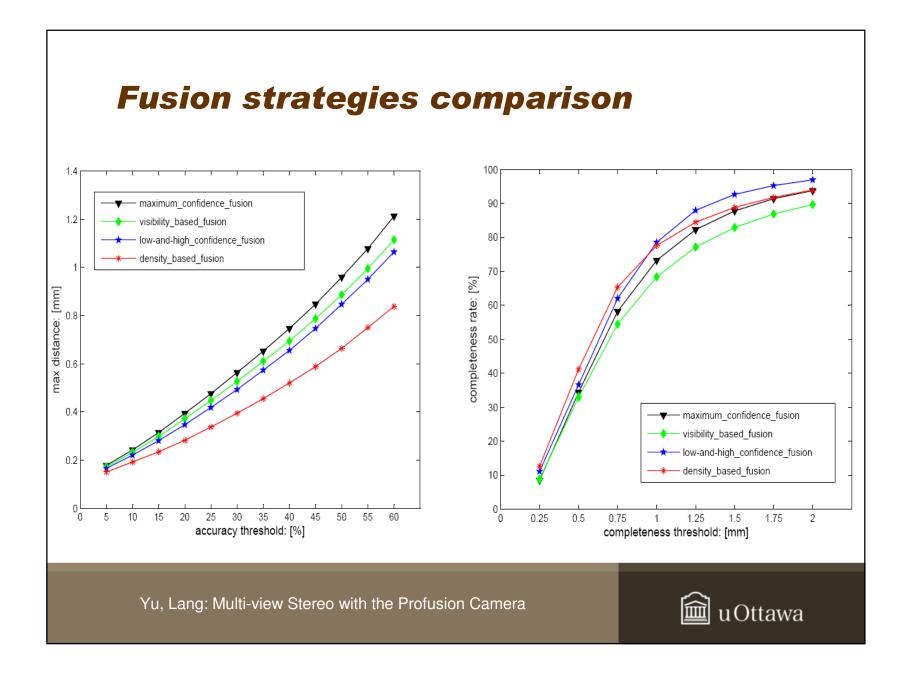
Evaluation of Fusion Strategies

• Two new variants:

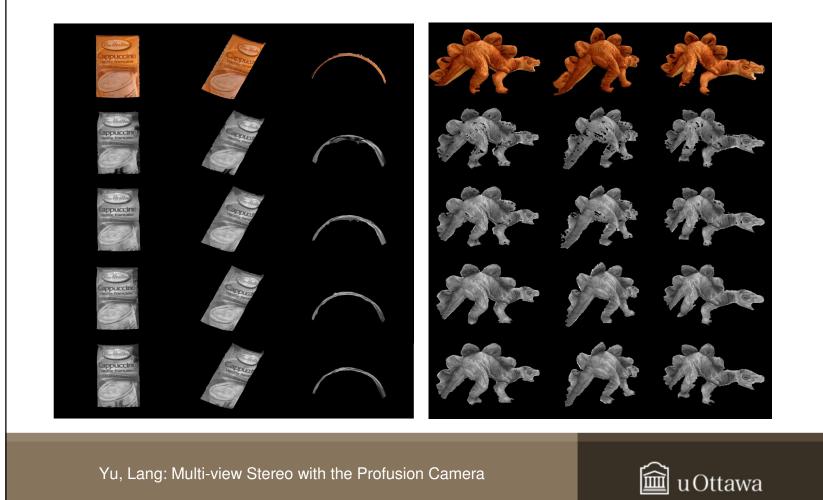
- Low-and-high confidence fusion
- Density-based fusion

Two additional fusion strategies as references

- Maximum confidence fusion
 - Similar to the low and high confidence fusion. The only difference is it only records the candidate with highest confidence value in the MVS pointcloud generation.
- Visibility-based fusion [Merrell et al. 07]
 - It fuses the multiple MVS pointclouds by minimizing violations of visibility



Fusion strategy Comparison



Conclusion and Future work

- Conclusion
 - A 3D Reconstruction Framework with a new matching method and two fusion strategies

Future Work

- Optimize the camera calibration and 3D reconstruction together based on the bundle adjustment [Furukawa & Ponce 08]
- Improvements in computational efficiency
- Combining multiple viewpoints

