Belief Propagation and its Applications in Computer Vision and Image Processing

Alan Brunton

Outline

- Overview
- Markov Random Fields
- Factor Graphs
- Extensions
- Applications

Belief Propagation

- originally by Pearl [Pea88]
- global optimization algorithm for graphical probability models
- exact for tree structured graphs
- approximate for graphs with loops: local optimum
over large neighborhood of state space
- continuous and discrete formulations

[SII $\left.{ }^{+} 03\right]$

Markov Random Fields

- graphical model $G=(V, E)$
- variables represented by nodes
- joint distribution factored into potentials on cliques

$$
\begin{equation*}
P(X)=\prod_{c \in Q} \phi_{c}\left(X_{c}\right) \tag{1}
\end{equation*}
$$

- Markov property

Factor Graphs

- by Kschischang et al. [KFL01]
- bipartite graph structure
- factor nodes represent potentials, share edges with parameters

$$
\begin{equation*}
P(X)=\prod f_{i}\left(X_{C_{i}}\right) \tag{2}
\end{equation*}
$$

[PL08]

BP on MRFs

- messages passed along edges

$$
\begin{equation*}
m_{p q}^{t}\left(x_{q}\right)=\int_{x_{p}} \phi_{p q}\left(x_{p}, x_{q}\right) \prod_{s \in N(p) \backslash q} m_{s p}^{t-1}\left(x_{p}\right) d x_{p} \tag{3}
\end{equation*}
$$

- belief

$$
\begin{equation*}
b_{p}\left(x_{p}\right)=\prod_{q \in N(p)} m_{q p}^{t}\left(x_{p}\right) \tag{4}
\end{equation*}
$$

- exact for tree-structured graphs
- sum-product
- max-product

$$
\begin{equation*}
m_{p q}^{t}\left(x_{q}\right)=\max _{x_{p}} \psi_{p q}\left(x_{p}, x_{q}\right) \prod_{s \in N(p) \backslash q} m_{s p}^{t-1}\left(x_{p}\right) \tag{5}
\end{equation*}
$$

BP on 2D Grid Pairwise MRFs

typically take joint distribution

$$
\begin{equation*}
P(X, Y)=\prod_{(p, q) \in E} \psi_{p q}\left(x_{p}, x_{q}\right) \prod_{p \in V} \phi_{p}\left(x_{p}, y_{p}\right) \tag{6}
\end{equation*}
$$

and write as an energy function

$$
\begin{equation*}
E(X, Y)=\sum_{(p, q) \in E} S_{p q}\left(x_{p}, x_{q}\right)+\sum_{p \in V} D_{p}\left(x_{p}\right) \tag{7}
\end{equation*}
$$

BP on 2D Grid Pairwise MRFs

max-product becomes min-sum

$$
\begin{equation*}
m_{p q}^{t}\left(x_{q}\right)=\min _{x_{p}}\left(D_{p}\left(x_{p}\right)+S_{p q}\left(x_{p}, x_{q}\right)+\sum_{s \in N(p) \backslash q} m_{s p}^{t-1}\left(x_{p}\right)\right) \tag{8}
\end{equation*}
$$

belief becomes

$$
\begin{equation*}
b_{p}\left(x_{p}\right)=\sum_{q \in N(p)} m_{q p}^{t}\left(x_{p}\right) \tag{9}
\end{equation*}
$$

BP on Factor Graphs

- messages passed along edges from variable to factor nodes and vice-versa
- exact for tree-structured graphs
- generalized sum-product algorithm [KFL01]

BP on Factor Graphs

- variable-to-factor message

$$
\begin{equation*}
m_{p \rightarrow f}^{t}\left(x_{p}\right)=\prod_{g \in N(p) \backslash f} m_{g \rightarrow p}^{t-1}\left(x_{p}\right) \tag{10}
\end{equation*}
$$

- factor-to-variable message

$$
\begin{equation*}
m_{f \rightarrow p}^{t}\left(x_{p}\right)=\sum_{N(f) \backslash p}\left(f\left(X_{N(f)}\right) \prod_{s \in N(f) \backslash p} m_{s \rightarrow f}^{t-1}\left(x_{s}\right)\right) \tag{11}
\end{equation*}
$$

- summary message for variable node

$$
\begin{equation*}
b_{p}\left(x_{p}\right)=\prod_{f \in N(p)} m_{f \rightarrow p}^{t}\left(x_{p}\right) \tag{12}
\end{equation*}
$$

Limitations

- storage and bandwidth requirements
- message updates exponential in clique size
- many message iterations needed for large models
- dimensionality of variables

Extensions

- Hierarchical BP [FH06]
- Generalized BP [YFW03]
- Nonparametric BP [SII+ 03]
- Linear constraint nodes [PL08]

[PL08]

Stereo

Figures from [SZS03].

Image Restoration

Figures from [FH06].

Tracking

Figures from [SII+ 03].

Thank You
（Redro F．Felzenszwalb and Daniel P．Huttenlocher． Efficient belief propagation for early vision． Int．J．Comput．Vision，70（1）：41－54， 2006.

囯 F．R．Kschischang，B．J．Frey，and H．－A．Loeliger． Factor graphs and the sum－product algorithm． IEEE TRANSACTIONS ON INFORMATION THEORY， 47（2）：498－519， 2001.
圊 J．Pearl．
Probabilistic Reasoning in Intelligent Systems：Networks of Plausible Inference． Morgan Kaufmann， 1988.
婳 B．Potetz and T．S．Lee．

Efficient belief propagation for higher－order cliques using linear constraint nodes．
Computer Vision and Image Understanding，112：39－54， 2008.

嗇 Erik B．Sudderth，Alexander T．Ihler，Er T．Ihler，William T． Freeman，and Alan S．Willsky．
Nonparametric belief propagation．
In In CVPR，pages 605－612， 2003.
國 Jian Sun，Nan－Ning Zheng，and Heung－Yeung Shum． Stereo matching using belief propagation． IEEE Trans．Pattern Anal．Mach．Intell．，25（7）：787－800， 2003.

國 Jonathan S．Yedidia，William T．Freeman，and Yair Weiss．

Understanding belief propagation and its generalizations.

 pages 239-269, 2003.