Epipolar geometry The fundamental matrix and the tensor

Robert Laganière University of Ottawa
laganier@site.uottawa.ca www.site.uottawa.ca/~laganier

Image formation through lenses

- The lens equation is: $\frac{1}{f}=\frac{1}{d o}+\frac{1}{d i}$

Image formation through lenses

- Most of the time we work at infinity i.e. do>>di
- the image plane is at f
-
- We can assume a very narrow aperture
- here we are interested only in determining where the scene elements will project; intensity and color do not matter
* This is a pin-hole camera

The pin-hole camera model

- With the reference frame located at the projection center, the basic projective equation is built from this simple expression:
$\frac{Y}{Z}=\frac{y}{f}$

- We therefore have:
$x=f \frac{X}{Z} \quad y=f \frac{Y}{Z}$

The pin-hole camera model

- On the image plane we work in pixel coordinates
- If ℓx and ℓy are the horizontal and vertical pixel sizes and if $\left(\mathrm{u}^{2}, \mathrm{v}_{0}\right)$ is the pixel coordinate of the image plane center, then the image of point X in pixels is:

$$
u=\frac{f}{\ell_{x}} \frac{X}{Z}+u o=f_{x} \frac{X}{Z}+u o \quad v=\frac{f}{\ell_{y}} \frac{X}{Z}+v_{o}=f_{y} \frac{X}{Z}+v_{o}
$$

The pin-hole camera model

- If $\mathbf{X}=[\mathrm{X}, \mathrm{Y}, \mathrm{Z}, 1]^{\top}$ and $\mathbf{x}=[u, v, 1]^{\top}$ then we have:

$$
\mathbf{x}=\mathbf{K}[\mathbf{I} \mid \mathbf{0}] \mathbf{X}=\left[\begin{array}{ccc}
f_{x} & 0 & u_{0} \\
0 & f_{y} & v_{0} \\
0 & 0 & 1
\end{array}\right][\mathbf{I} \mid \mathbf{0}] \mathbf{X}
$$

- This equality is up to a scale factor since we used homogenous coordinates for \mathbf{x}
- \mathbf{K} is the (invertible) calibration matrix
- Here the world reference frame is at the camera focal point

(homogenous coordinates)

- $x=[x, y, 1]^{\top}$ is a $2 D$ point
- $I=[a, b, c]^{\top}$ defines a 2D line
- point \mathbf{x} lies on line I if:

$$
\mathbf{x}^{\mathrm{T}} \mathbf{l}=0
$$

- The intersection of two lines is:
- The line that passes through two points is given by:

$$
\mathbf{X} \times \mathbf{X}^{\prime}
$$

The pin-hole camera model

- When the camera is at general position, we have:

$$
\mathbf{x}=\mathbf{K}[\mathbf{R} \mid \mathbf{T}] \mathbf{X}=\mathbf{P X}
$$

- \mathbf{R} and \mathbf{T} are the rotation and the translation required to map a 3D point from world coordinates to camera coordinates
- If \mathbf{C} is the coordinate of the camera center then the translation-RC
- \mathbf{P} is the 3×4 projection matrix
- It has 11 degrees of freedom (3 rotations, 3 translations, 2 principal points, 1 focal length, 1 pixel ratio, 1 skew)

The pin-hole camera model

- The camera is said to be calibrated if we know the relation between world coordinates and pixel coordinates (up to a scale)
- That is basically if we know the focal length in pixel units (and the location of the principal point)
- A more accurate camera model would also include distortion parameters in the projection matrix

The geometry of two cameras

The fundamental matrix

- We can derive the algebraic expression of the epipolar line of image point \mathbf{x} by projecting two points of the projection ray: - The camera centre C and the image point \mathbf{x}

F is the fundamental matrix and because x^{\prime} lies on the epipolar line, then:

$$
\mathbf{x}^{\prime T} \mathbf{F} \mathbf{x}=0
$$

The fundamental matrix

- F is up to a scale factor and $\operatorname{det}(F)=0$
- F is a mapping from a 2D plane to a 1D pencil of lines
- It has two non-null eigenvalues
- F is of rank 2 with 7 degrees of freedom
- The epipoles correspond to the left and right null space of F because $\mathbf{x}^{T T} \mathbf{F e}=0$ for all \mathbf{x}^{\prime}

$$
\mathbf{F e}=0 \quad \mathbf{e}^{T T} \mathbf{F}=0
$$

- The epipoles are also the projection of the \mathbf{T} vector

$$
\mathbf{e}^{\prime}=\mathbf{K}^{\prime} \mathbf{T} \quad \mathbf{e}=\mathbf{K} \mathbf{R}^{\mathrm{T}} \mathbf{T}
$$

- The transpose of F is the fundamental matrix of $\left(P^{\prime}, P\right)$

Estimation of the fundamental matrix

- For each point correspondence, you can write the epipolar constraint
- Which gives you a linear equation with the elements of F as unknown
- Set the $9^{\text {th }}$ element of F to 1 to fix the scale
- With 8 point correspondences you have enough linear equations to solve your matrix
- But you will not get $\operatorname{det}(F)=0$ necessarily
- The epipolar lines will not intersect at a unique point
- Solution: force the $3^{\text {rd }}$ eigenvalue to 0

Estimation of the fundamental matrix

- The normalized 8-point algorithm:
- Translate your points such that the centroid is at $(0,0)$
- Scale your points such that the RMS distance is sqrt(2)
- This way the system of equations is better conditioned
- If you have more points, it is just better
- You perform an algebraic minimization of the overdetermined system of equations
- A non-linear 7-point algorithm also exist
- Very useful in robust estimation of F

Estimation of the fundamental matrix

- The previous algorithm consists in an algebraic minimization
- To optimally minimize the geometric error you have to use:

$$
\sum_{i} \operatorname{dist}\left(\mathbf{x}_{i}, \mathbf{x}_{i}^{\sim}\right)^{2}+\operatorname{dist}\left(\mathbf{x}_{i}^{\prime}, \mathbf{x}_{i}^{\prime \sim}\right)^{2}
$$

- that minimizes the distance between the image point and their 'true' position on the epipolar line
- This is the Gold Standard algorithm
- Use algebraic minimization as an initial estimate

Estimation of the fundamental matrix

- You can also use an approximation of the geometric error:

$$
\sum_{i} \operatorname{dist}\left(\mathbf{x}_{i}, \mathbf{F}^{\mathrm{T}} \mathbf{x}_{i}^{\prime}\right)^{2}+\operatorname{dist}\left(\mathbf{x}_{i}^{\prime}, \vec{F} \mathbf{x}_{i}^{\prime}\right)^{2}
$$

- where the distance between an image point and its epipolar line is given by:

$$
\operatorname{dist}\left(\mathbf{x}, \mathbf{F}^{\mathrm{T}} \mathbf{x}^{\prime}\right)=\mathbf{x}^{\prime \mathrm{T}} \mathbf{F} \mathbf{x} /\left((\mathbf{F} \mathbf{x})_{1}^{2}+(\mathbf{F} \mathbf{x})_{2}^{2}\right)
$$

- This distance is useful in measuring the support in a RANSAC scheme

The fundamental matrix

- We have, from previous derivations:

$$
\mathbf{F}=\left[\mathbf{e}^{\prime}\right]_{\mathbf{R}} \mathbf{P}^{(}\left[\begin{array}{c}
\mathbf{K}^{-1} \\
\mathbf{0}^{\mathrm{T}}
\end{array}\right]=\left[\mathbf{K}^{\prime} \mathbf{T}\right]_{\times} \mathbf{K}^{\prime} \mathbf{R} \mathbf{K}^{-1}=\mathbf{K}^{-\mathrm{T}}[\mathbf{T}]_{\times} \mathbf{R K}^{-1}
$$

- which allows us to express the epipolar constraint as:

The Essential matrix

- Two cameras are said to be calibrated if you can express the pixel coordinates of both cameras into common world coordinates
- E is a special case of F which expresses the same epipolar relation but with the K matrices removed

$$
\mathbf{E}=\mathbf{K}^{\prime \mathrm{T}} \mathbf{F K}=[\mathbf{T}]_{\mathbf{R}} \mathbf{R}
$$

- E is then built only from R and T
- Therefore if we know E we can obtain R and T

Estimation of the Essential matrix

- If your cameras are calibrated, then you can estimate E using the 8-point algorithm
- However, E has only 5 degrees of freedom
- 3 from R and 3 from T minus 1 for the scale
- We therefore have additional constraints on E
- the first two eigenvalues must be equal (third one still null)
- you have to impose this condition to make sure you obtain a valid E

The geometry of three cameras

- Suppose we have three cameras observing a line in space:

$$
\mathbf{P}=[\mathbf{I} \mid \mathbf{0}] \quad \mathbf{P}^{\prime}=\left[\mathbf{A} \mid \mathbf{a}_{4}\right] \quad \mathbf{P}^{\prime \prime}=\left[\mathbf{B} \mid \mathbf{b}_{4}\right]
$$

- Each projective relation between this line and its image induces a 3D plane that is obtained by backprojection:

$$
\mathbf{m}=\mathbf{P}^{\mathrm{T}} \mathbf{l}
$$

- These three planes must intersect at a common line:

- this is a geometric incidence

The geometry of three cameras

The geometry of three cameras

- We can then create a 4×3 matrix that expresses this line intersection constraint:

$$
\left[\mathbf{m}, \mathbf{m}^{\prime}, \mathbf{m}^{\prime}\right]^{\mathrm{T}} \mathbf{X}=\mathbf{M}^{\mathrm{T}} \mathbf{X}=\left[\begin{array}{ccc}
\mathbf{l} & \mathbf{A}^{\mathrm{T}} \mathbf{l}^{\prime} & \mathbf{B}^{\mathrm{T}} \mathbf{l}^{\prime}{ }^{\prime} \\
0 & \mathbf{a}_{4}^{\mathrm{T}} \mathbf{l}^{\prime} & \mathbf{b}_{4}^{\mathrm{T}} \mathbf{l}^{\prime}
\end{array}\right]^{\mathrm{T}} \mathbf{X}=0
$$

- for all \mathbf{X} on the 3D line
- This matrix has rank 2 because if we fixed the first two planes (columns), then there remains only one degree of liberty for the last plane
- or say otherwise, we can find two independent points for which $\mathrm{M}^{\top} \mathrm{X}=0$ (i.e. 2-dimensional null space)
- We therefore have a linear dependence:

$$
k \mathbf{m}+k^{\prime} \mathbf{m}^{\prime}+k^{\prime \prime} \mathbf{m}^{\prime \prime}=0
$$

The geometry of three cameras

- Considering the last row of \mathbf{M} we have:

$$
\begin{aligned}
& 0+k^{\prime} \mathbf{a}_{4}^{\mathrm{T}} \mathbf{l}^{\prime}+k^{\prime \prime} \mathbf{b}_{4}^{\mathrm{T}} \mathbf{l}^{\prime}=0 \\
& k^{\prime}=\mathbf{b}_{4}^{\mathrm{T}} \mathbf{l}^{\prime \prime}, k^{\prime \prime}=-\mathbf{a}_{4}^{\mathrm{T}} \mathbf{l}^{\prime}
\end{aligned}
$$

- For the other columns we therefore have:

$$
l_{i}=\mathbf{l}^{\prime \mathrm{T}}\left(\mathbf{b}_{4} \mathbf{a}_{i}^{\mathrm{T}}\right) \mathbf{I}^{\prime}-\mathbf{l}^{\mathrm{T}}\left(\mathbf{a}_{4} \mathbf{b}_{i}^{\mathrm{T}}\right) \mathbf{I}^{\prime}=\mathbf{l}^{\mathrm{T}}\left(\mathbf{a}_{i} \mathbf{b}_{4}^{\mathrm{T}}-\mathbf{a}_{4} \mathbf{b}_{i}^{\mathrm{T}}\right) \mathbf{I}^{\prime \prime}=\mathbf{l}^{\prime} \mathbf{T}_{i} \mathbf{l}^{\prime \prime}
$$

- This is the line-line-line incidence relation which can be expressed in matrix form as:

$$
\mathbf{I}^{\mathrm{T}}=\mathbf{I}^{\mathrm{T}}\left[\mathbf{T}_{1}, \mathbf{T}_{2}, \mathbf{T}_{3}\right] \mathbf{l}^{\prime}
$$

- These three matrices are known as the trifocal tensor

Incidence relations in three views

- Different incidence relations exist:
- line-line-line (2 equations)
- point-line-line (1 equation)
- point-line-point (2 equations)
- point-point-line (2 equations)
- point-point-point (4 equations)
- All these equations are linear in the entries of the trifocal tensor

Estimation of the tensor

- A tensor is $3 \times 3 \times 3$ matrix (27 elements)
- A tensor is geometrically valid if it is built from three projection matrices
- It thus satisfies 8 algebraic constraints
- A minimum of 6 points is required to solve
- Using the incidence relations it can be estimated linearly from 7 point triplets
- Normalize your data
- The resulting solution will not satisfy the constraints

Estimation of the tensor

- To obtain a valid tensor, you have to perform algebraic minimization using the relation:

$$
\mathbf{T}_{i}=\mathbf{a}_{i} \mathbf{b}_{4}^{\mathrm{T}}-\mathbf{a}_{4} \mathbf{b}_{i}^{\mathrm{T}}
$$

- The optimal estimate is obtained using the Gold standard algorithm

$$
\sum_{i} \operatorname{dist}\left(\mathbf{x}_{i}, \mathbf{x}_{i}^{\sim}\right)^{2}+\operatorname{dist}\left(\mathbf{x}_{i}^{\prime}, \mathbf{x}_{i}^{\prime \prime}\right)^{2}+\operatorname{dist}\left(\mathbf{x}^{\prime \prime}{ }_{i}, \mathbf{x}^{\prime}{ }_{i}^{\prime \sim}\right)^{2}
$$

- Which requires to extract the projection matrices from the tensor
- from the epipoles

Image point transfer

- With the geometry between cameras known, it becomes possible to transfer two corresponding image points to a third view
- This can be done by intersecting the epipolar lines assuming you have the two F matrices:

$$
\mathbf{x}_{3}=\left(\mathbf{F}_{31} \mathbf{x}_{1}\right) \times\left(\mathbf{F}_{32} \mathbf{x}_{2}\right)
$$

- But this is not very accurate when the epipolar lines are almost parallel
- and not feasible for matches on the trifocal plane

Image point transfer

- It is also possible to use the incidence relations
- Using point-point-point would work
- But using point-line-point is simpler
- If \mathbf{x}_{1} and \mathbf{x}_{2} are known correspondences in views 1 and 2, then the position of \mathbf{x}_{3} can be found as follows:
- Use \mathbf{F}_{21} to generate an image line in view 2 perpendicular to the epipolar line
- Make sure your matches are consistent with this \mathbf{F} and that your \mathbf{F} is consistent with your tensor
- The transferred point \mathbf{x}_{3} is then given by the point-line-point incidence relations

The classic book

- Mutliple view geometry
- Richard Hartley and Andrew Zisserman
- Second edition
- Cambridge University Press 2003

