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Probability and Entropy

1
3
.1

8

1
3
.1

9

1
3
.2

0

1
3
.2

1

1
3
.2

2

1
3
.2

3

1
3
.2

4

1
3
.2

5

1
3
.2

6

1
3
.2

7

20

10

 0

m−1

m

Robot Position

P
ro

b
a

b
il

it
y

 D
e

n
s

it
y

0.01

0.03

0.10

0.21

0.24

0.19

0.14

0.06

0.02

Using Mackay’s notation [3], uncertain knowledge of the value of a
parameter x whose possible value lies within the discrete ‘alphabet’
AX = {a1, a2, . . .} of numeric values is represented probabilistically by a
set of mutually-exclusive statements ‘x = ai ’, assigned probabilities
P(x = ai ) which sum to one. The information entropy H(X ) of this
probability distribution is the expectation of the information content of
whichever statement turns out to be true:

H(X ) = E

[
log2

1

P(x)

]
=

∑
x∈AX

P(x) log2

1

P(x)
,

where we use P(x) for P(x = ai ). H(X ), in bits, is a measure of the
average surprise value of the distribution, and its uncertainty.



Joint Entropy

Uncertain knowledge of two parameters x and y , where the extra
parameter y is known to have one of a second alphabet of values
BY = {b1, b2, . . .}, is represented by a set of statements ‘x = ai , y = bi ’
covering all possible combinations to which the observer assigns
probabilities P(x = ai , y = bi ) which sum to one. This is a joint
probability distribution over X and Y , which has a joint entropy
representing total uncertainty defined as expected:

H(XY ) = E

[
log2

1

P(xy)

]
=

∑
x∈AX ,y∈AY

P(xy) log2

1

P(xy)
,

where we have abbreviated P(x = ai , y = bi ) to P(xy).



Conditional Entropy
Now if the observer were to learn the exact value of one of the uncertain
parameters, for instance that y = bi , he would be left with a residual
entropy in the distribution over x called the conditional entropy of X
given y = bi :

H(X |y = bi ) =
∑
x∈AX

P(x |y = bi ) log2

1

P(x |y = bi )
.

If the observer is not told the value of y but considers the expected effect
on the entropy of X of each possibility, he can calculate the expected
conditional entropy of X given Y ; the expected new entropy of X on
learning the value of y , without knowing in advance what that value will
be:

H(X |Y ) = E

[
log2

1

P(x |y)

]
=

∑
x∈AX ,y∈AY

P(xy) log2

1

P(x |y)
.



Mutual Information

We are led directly to the mutual information I (X ;Y ), defined as the
average expected reduction in entropy of one parameter on learning exact
value of the other. The reduction in entropy equates to how much
information learning the value one parameter is expected to give the
observer about the other, and I (X ;Y ) is defined as follows:

I (X ;Y ) = H(X )− H(X |Y ) .

Note that it is easy to show that I (X ;Y ) = I (Y ;X ).



Entropy of Continuous Distributions
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The entropy of a probability density function p(x) over an uncertain
parameter x which may take a continuum of different values over a range
X is not well-defined. This can be seen by splitting the range X into
discrete intervals of width δx to form a histogram where the probability
that x has a value within each particular bin is approximately p(x)δx .
The entropy of this distribution is:

H(X ) =
∑
x∈X

p(x)δx log2

1

p(x)δx
.

On attempting to find the entropy of the continuous distribution by
taking the limit δx → 0, we find that H(X ) diverges since log2

1
p(x)δx

increases by one bit with every halving of the width of δx .



Mutual Information for Continuous Distributions

Still well-defined, however, is the mutual information of two continuous
distributions. With discrete bin sizes δx , δy the MI is:

I (X ;Y ) = H(X )− H(X |Y )

=
∑
x∈X

p(x)δx log2

1

p(x)δx

−
∑

x∈X ,y∈Y

p(x , y)δxδy log2

1

p(x |y)δx

=
∑

x∈X ,y∈Y

p(x , y)δxδy log2

p(x |y)

p(x)
,

the δx terms in the logarithm cancelling. Taking the limit
δx → 0, δy → 0 we obtain the MI of two continuous PDFs:

I (X ;Y ) =

∫
x,y

p(x , y) log2

p(x |y)

p(x)
dxdy



MI in a Multi-Variate Gaussian
Consider vector a of N uncertain parameters for which we hold a
continuous probability density described by a single multi-variate
Gaussian. Such a probability distribution is parameterised by a ‘state
vector’ of means â of dimension N and an N × N covariance matrix Paa.
Explicitly, the PDF is:

p(a) = (2π)−
N
2 |Paa|−

1
2 e−

1
2 (a−â)

>P−1
aa (a−â) .

Now let us suppose that a is divided into two interesting sets of
parameters, α and β, of lengths Nα and Nβ . We can partition the state
vector and covariance matrix as follows:

â =

(
α̂

β̂

)
; Paa =

[
Pαα Pαβ
Pβα Pββ

]
.

The mutual information of α and β is as follows:

I (α;β) = E

[
log2

p(α|β)

p(α)

]
.



MI in a Multi-Variate Gaussian
Now distribution p(α) is described trivially by the relevant partitions of
the joint state vector and covariance matrix:

p(α) = (2π)−
Nα
2 |Pαα|−

1
2 e−

1
2 (α−α̂)

>P−1
αα(α−α̂) .

To obtain p(α|β), we use the general formula for conditioning one
partition of a state vector and covariance with respect to another, as
presented very clearly recently by Eustice et al.[2]. If we learn the exact
values of all elements of β, the state vector and covariance of α can be
updated to:

α̂′ = α̂ + PαβP
−1
ββ(β − β̂)

P′αα = Pαα − PαβP
−1
ββPβα .

Note that this is essentially the update step of the Kalman Filter, where
usually α would represent the state of the system in question and β a set
of measurements. So:

p(α|β) = (2π)−
Nα
2 |P′αα|−

1
2 e−

1
2 (α−α̂

′)>P′−1
αα (α−α̂′) ,



MI in a Multi-Variate Gaussian

and, using parts of an argument given by Manyika [4]:

I (α;β) = E

[
log2

|P′αα|−
1
2 e−

1
2 (α−α̂

′)>P′−1
αα (α−α̂′)

|Pαα|−
1
2 e−

1
2 (α−α̂)>P

−1
αα(α−α̂)

]

= log2

|Pαα|
1
2

|P′αα|
1
2

+
1

ln2
E

[
−1

2
(α− α̂′)>P′−1αα (α− α̂′)

]
+

1

ln2
E

[
1

2
(α− α̂)>P−1αα(α− α̂)

]
=

1

2
log2

|Pαα|
|P′αα|

+
1

ln2

(
−1

2
+

1

2

)
=

1

2
log2

|Pαα|
|Pαα − PαβP

−1
ββPβα|

.



Feature Search in Model-Based Tracking
As in [1]:

• Object state x and measurement candidates zi = hi (x) + nm

x̂m =


x̂
ẑ1
ẑ2
...

 , Pxm =


Px Px

∂h1
∂x

>
Px

∂h2
∂x

>
. . .

∂h1
∂x Px

∂h1
∂x Px

∂h1
∂x

>
+ R1

∂h1
∂x Px

∂h2
∂x

>
. . .

∂h2
∂x Px

∂h2
∂x Px

∂h1
∂x

> ∂h2
∂x Px

∂h2
∂x

>
+ R2 . . .

...
...

...





Measurement Information Matrix

I(xm) =


∗ I (x; z1) I (x; z2) . . .

I (z1; x) ∗ I (z1; z2) . . .
I (z2; x) I (z2; z1) ∗ . . .

...
...

...


• MI between each measurement and state

• MI between each pair of measurements



Tracking a Translating, Rotating Object in 2D
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• 2D point feature measurements

• 1D edge feature measurement

• One pixel measurement uncertainty



Information-Guided Search with Point Features



Information-Guided Search with Point Features



Information-Guided Search with Point Features



Information-Guided Search with Point Features



Information-Guided Search with Point Features



Information-Guided Search with Edge Features



Information-Guided Search with Edge Features



Information-Guided Search with Edge Features



Information-Guided Search with Edge Features



Information-Guided Search with Edge Features



Information-Guided Search with Edge Features
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