CRV 2010 Titorial Day

Homography Estimation Using DLT

Elan Dubrofsky

Canada Border Services
Agency (CBSA)

Reminder: What is a Homography?

- A homography is a transformation that maps from one plane to another.
- Homography: An invertible mapping of points (and lines) on the projective plane P^{2}.

Motivation: Where Are Homographies Used?

- UBC Hockey Tracking System
- Subgoal: Get Mapping from Video to Rink

Motivation: Where Are Homographies Used? (cont'd)

- Image Mosaicing: Autostitch (Matthew Brown, UBC)

Motivation: Where Are Homographies Used? (cont'd)

- Stereo Rectification: (Loop and Zhang, Microsoft)
- Images are transformed such that epipolar lines map to each other.

Direct Linear Transform (DLT) Algorithm

- Goal: Estimate H given point correspondences \mathbf{x}_{i} and $\mathbf{x}_{\mathrm{i}}{ }^{\prime}$ from one plane to another.
- Each correspondence \mathbf{x}_{i} and \mathbf{x}_{i}^{\prime} yields a 2 by 9 matrix A_{i} :

$$
A_{i}=\left(\begin{array}{cccccccc}
-x & -y & -1 & 0 & 0 & 0 & u x & u y \\
u \\
0 & 0 & 0 & -x & -y & -1 & v x & v y \\
v
\end{array}\right)
$$

$$
\text { Where }(x, y, 1)^{\top} \text { represents } \mathbf{x}_{i},(u, v, 1)^{\top} \text { represents } \mathbf{x}_{i}^{\prime} \text {, and } A_{i} \mathbf{h}=0
$$

- Since each point correspondence provides 2 equations, 4 correspondences are sufficient to solve for the 8 degrees of freedom of H .
- Four 2 by $9 A_{i}$ matrices (one per point correspondence) can be stacked on top of one another to get a single 8 by 9 matrix A.
- The 1D null space of A is the solution space for h.

Direct Linear Transform (DLT) Algorithm (cont'd)

- What if there are more than 4 correspondences?
- More robust solution.
- If all of the point correspondences are exact, A has rank 8 and there is a single homogeneous solution.
- Otherwise, the goal becomes to find \mathbf{h} such that some cost function is minimized.

DLT Transform Cost Functions

- Algebraic distance: Minimize the norm ||Ah||
- The solution to this problem is the unit singular vector corresponding to the smallest singular value of A. This can be found using Singular Value Decomposition (SVD) analysis.
- While this is a simple linear cost function that is computationally cheap, its disadvantage is that the quantity being minimized is not geometrically meaningful.

DLT Transform Cost Functions (cont'd)

- Geometric distance
- Measure the Euclidian distance between where the homography maps a point and where the point's correspondence was originally found.
- Another term for this is the transfer error.
- Assuming there are only errors in the second image, the total transfer error for a set of correspondences $\mathrm{x}_{\mathrm{i}} \rightarrow \mathrm{x}_{1}^{\prime}$ is:

$$
\sum_{i} d\left(\mathbf{x}_{\mathbf{i}}^{\prime}, H \mathbf{x}_{\mathbf{i}}\right)^{2}
$$

- In the more realistic case of there being errors in both images we minimize the symmetric transfer error where both the forward (H) and backward $\left(\mathrm{H}^{-1}\right)$ transformations are taken into account. The symmetric transfer error is calculated as:

$$
\sum_{i} d\left(\mathbf{x}_{\mathbf{i}}^{\prime}, H \mathbf{x}_{\mathbf{i}}\right)^{2}+d\left(\mathbf{x}_{\mathbf{i}}, H^{-1} \mathbf{x}_{\mathbf{i}}^{\prime}\right)^{2}
$$

DLT Transform Cost Functions (cont'd)

- Geometric distance (cont'd)
- To minimize this cost function, an iterative approach is required.
- While the results often are more accurate, iterative techniques have disadvantages compared to linear algorithms such the one for minimizing Algebraic distance.
- Iterative algorithms are slower, risk not converging and present additional problems such as picking initial estimates and stopping criteria.
- Other (more complicated) cost functions include Reprojection Error and Sampson Error.

Extended DLT Algorithm For Including Lines

- A line in a plane can be represented by an equation of the form:
- ax+by+c = 0 , where \mathbf{a}, b and c are line parameters.
- Therefore a line can be represented as the vector $(a, b, c)^{\top}$.
- This is a homogeneous representation of a line.
- The relationship between lines in two images:
- $I=H^{\top} I$
- H is the relation for points in the two planes.
- This result gives rise to a derivation for the DLT matrix A_{i} for a line correspondence very similar to that for a point correspondence.

$$
A_{i}=\left(\begin{array}{ccccccccc}
-u & 0 & u x & -v & 0 & v x & -1 & 0 & x \\
0 & -u & u y & 0 & -v & v y & 0 & -1 & y
\end{array}\right)
$$

Where $(x, y, 1)^{\top}$ represents $\mathbf{I}_{\mathbf{i}},(u, v, 1)^{\top}$ represents $\mathbf{I}_{\mathbf{i}}^{\prime}$, and $\mathrm{A}_{\mathbf{i}} \mathbf{h}=0$

- The extended DLT algorithm is the same as the original except the correct A_{i} matrix must be used depending on whether you have a point or line correspondence.

Application: UBC Hockey Tracking System

- Goal: Get player trajectories from video sequence

Application: UBC Hockey Tracking System (cont'd)

- Subgoal: Get mapping from video to rink

Application: UBC Hockey Tracking System (cont'd)

- Why use lines?
- Closeup situation gives few good keypoints
- Point correspondences not very reliable compared to lines.
- Hockey rink contains five distinct lines.
- At least one line is almost always visible.

Application: UBC Hockey Tracking System (cont'd)

- Test: Compare using only the 5 point correspondences vs. using the 5 points and 3 line correspondences

(a) Frame of hockey video

Application: UBC Hockey Tracking System (cont'd)

- Result:

(a) Point correspondences

(b) Point and line correspondences

