
Shi-Tomasi, Harris corners and KLT Tracker

Mark Fiala
Ryerson University

Mark.fiala@ryerson.ca

CRV 2010 Tutorial Day

•Task: find points between 2 images that correspond to the same object –
then use these correspondences for computer vision applications (finding
pose, SLAM, building 3D models, locating objects, etc…)

•Single pixel typically not distinctive – use patch of pixels in neighbourhood
around a point

•Compare a 2D patch of one image to a patch of the same size in another
image – apply some similarity measure (score)

•One similarity measure is SSD (Sum of Squared Differences) – add up the
square of differences between pixels in corresponding positions

Motivating Interest Points
Finding Correspondences: comparing patches of pixels

Mark Fiala 2010

Finding Correspondences

Compare patches

SSD =Σi
n (Xi-Yi)2

best score = lowest SSD

Selecting Image Patches likely to match

Given similarity measures, how can we find corresponding image points?

1. Brute force test every possible patch in first image with every possible
location in the other image

• Prohibitive computational cost.
• Also, most patches are on edges or blank regions who aren’t finding reliable

matches anyways

2. Use an interest point detector or corner detector to find a few hundred
candidates – just match those

• How can we figure out if a patch is likely to have a unique match in the
other image? We can examine a patch first, and declare it an interest
point.

• We could test each image patch within its own image first before
comparing it with the other image

• See if a patch matches a neighbourhood of points around it. If there is no
good match nearby then it is a distinctive patch – label it an interest
point. We reduce computational cost by wh.

• Is there an even better way to do this, to save on patch comparisons
around each point?

Mark Fiala 2010

Types of Patches
Mark Fiala 2010

• Ambiguous matches along edge
• 1-D uncertainty in matching
• Will match with itself well in close

neighbourhood along the edge –
and thus will not match uniquely
in other image

• Distinct region (corner), not
ambiguous

• Will NOT match with itself well in
close neighbourhood in any
directions – and thus could match
uniquely in other image

• Blank region matches many spots
• 2-D uncertainty in matching
• Will match with itself well in close

neighbourhood in all directions –
and thus will not match uniquely
in other image

•See if a patch matches a neighbourhood of points around it. If there is no
good match nearby then it is a distinctive patch – label it an interest point.

•Is there an even better way to do this, to save on patch comparisons around
each point?

• Look at spatial derivatives dI/dx and dI/dy
• use first order assumption that each pixel will change by dI/dx δx + dI/dy δy
• Find SSD patch comparison as a function of small change [δx,δy]t

• SSD ~= ||D|| = DtD where D= Assume difference in a pixel is defined by linear
approximation – use first derivative X displacement vector

Finding Patches that don’t match their Neighbours

D =

dI0/dx dI0/dy
dI1/dx dI1/dy
dI2/dx dI2/dy
dI3/dx dI3/dy

. . .

δx
δy

SSD =
(ΣidIi/dx)2 (ΣidIi/dx) (ΣidIi/dy)
(ΣidIi/dy) (ΣidIi/dx)2 (ΣidIi/dy)2

δx
δy

[δx δy]

Mark Fiala 2010

• correlate patch with patches from same source image
• if a patch matches its neighbours well, it likely won’t be uniquely found in
other image
• one way – brute force compare patch with neighbours
• needs b2p2 pixel operations – with p=11, b=11 this is ~104 operations per pixel

Finding Patches that don’t match their Neighbours

• Can we reduce these operations?
• Approximate SSD using linear assumption of constant spatial derivatives
• Create corner matrix using dI/dx and dI/dy
• find SSD using equation

• Corner matrix C
• Approximate SSD
using CC =

Mark Fiala 2010

• use klt_corner_gui.exe (can download from http://www.scs.ryerson.ca/~mfiala)
• 2x2 C matrix decomposed to find ellipse major and minor axes
• use minimum of the two axes (smaller eigenvalue of C)
• large minimum eigenvalue = tight ellipse
= large change in SSD for small change in position = distinctive point

Using C Matrix to find Interest Points

Edge patch – not so distinct (min eigenvalue=2.5)

Bland region – no real change in SSD, not distinct at all (min eigenvalue=0.1)

Mark Fiala 2010

More patches

Edge patch – not so distinct (min eigenvalue=0.1)

region with edges in both directions, more distinct (min eigenvalue=8.1)

Edge patch – not so distinct (min eigenvalue=0.5)

Mark Fiala 2010

More patches

Corner patch – more distinct (min eigenvalue=5.0)

even more distinct (min eigenvalue=19.3)

Edge patch – not so distinct (min eigenvalue=3.0)

Mark Fiala 2010

Min Eigen Image

Calculate min eigenvalue for each pixel position

Mark Fiala 2010

Min Eigen Image

Calculate min eigenvalue for each pixel position
Find local peaks – write these out as interest points

Mark Fiala 2010

• Finding eigenvalues of corner matrix C requires some calculation
• we can cut some corners if we use the fact that the trace and
determinant of the matrix do not change with rotation (U,V matrices from
SVD)

Ways to Speed up Corner Detection

• Label the two eigenvalues (A,B) , trace = A+B, determinant = A x B
• all we are interested in is if the smaller of A and B is greater than a threshold
• Harris corner detector uses metric

• suggested k=0.25. Only if this quantity is above a threshold do we calculate
the full eigenvalues – saves lots of calculations

Mark Fiala 2010

Finding KLT corners – boat example

Finding KLT corners – boat example

Finding KLT corners – car example

Finding KLT corners – car example

KLT/Harris corners doesn’t give good results for all images

OpenCV interest point detector – cvGoodFeaturesToTrack()

Implements C-matrix, min eigenvalue method (Lec 5 KLT/Harris corner detector).
• Needs greyscale IplImage as input, provides CvPoint2D32f list output

Lec11_files.zip - cvGoodFeaturesToTrack_image.cpp

Mark Fiala 2010

Pg 332-334

KLT tracker

Optic Flow Equation:

Aperture Problem: a small pixel neighbourhood can only detect motion
perpendicular to edge

-therefore each pixel position can only constrain optic flow V to a 1D space.

Use optic flow equation for each pixel in patch – use least squares fit to find V

Mark Fiala 2010

KLT tracker

Optic Flow Equation:

Use optic flow equation for each pixel in patch – use least squares fit to find V

Use optic flow equation for each pixel in patch – use least squares fit to find V

This is of the form Ax=B. Least squares
solution is x = (AtA)-1AtB

Notice left quantity is inverse of C matrix used in corner detection.

Mark Fiala 2010

KLT tracker

Some links:

http://en.wikipedia.org/wiki/Optical_flow

http://en.wikipedia.org/wiki/Lucas%E2%80%93Kanade_Optical_Flow_Method

Mark Fiala 2010

OpenCV KLT tracker – cvCalcOpticalFlowPyrLK()

Implements KLT tracking using C-1 matrix (Lecture 6)
• Needs start points – uses output of cvGoodFeaturesToTrack()
• Iterates a few times for each point (each step gives linear movement)
• Processes on multiple levels (image pyramid)
• Image pyramid for each (greyscale) image must be created first (pyramid

consists of a set of images of different size)

Lec11_files.zip - cvCalcOpticalFlowPyrLK.cpp

Mark Fiala 2010

Pg 332-334

OpenCV KLT tracker – Lab1,2 example

Mark Fiala 2010

OpenCV KLT tracker – another example

Mark Fiala 2010

	Shi-Tomasi, Harris corners and KLT Tracker
	Motivating Interest Points�Finding Correspondences: comparing patches of pixels
	Finding Correspondences
	Selecting Image Patches likely to match
	Types of Patches
	Finding Patches that don’t match their Neighbours
	Finding Patches that don’t match their Neighbours
	Using C Matrix to find Interest Points
	More patches
	More patches
	Min Eigen Image
	Min Eigen Image
	Ways to Speed up Corner Detection
	Finding KLT corners – boat example
	Finding KLT corners – boat example
	Finding KLT corners – car example
	Finding KLT corners – car example
	OpenCV interest point detector – cvGoodFeaturesToTrack()
	KLT tracker
	KLT tracker
	KLT tracker
	OpenCV KLT tracker – cvCalcOpticalFlowPyrLK()
	OpenCV KLT tracker – Lab1,2 example
	OpenCV KLT tracker – another example

