CRV 2010 Tutorial Day

2-View Geometry

Mark Fiala Ryerson University Mark.fiala@ryerson.ca **3-Vectors for image points and lines**

2D Homogeneous Points

- Add 3rd number to a 2D point on image plane (add 1)
- Extend [u,v]^t to [u,v,1] ^t
- 2D point is now represented by 3D line, can multiply entire vector by a constant and it's still the same point

 $k[u,v,1]^{t} = [ku,kv,k]^{t} = [u,v,1]^{t}$

2D Projective Geometry

• Point is represented by 3D line passing through origin

(2D point -> 3D vector)

p=k[u,v,1] ^t

- Image plane is horizontal plane at z=1
- Image point is where 3D line passes through image plane
- Image line represented by where 3D plane passes through image plane
- 3D plane passes through origin, defined by normal (perpendicular) 3D vector L=[a,b,c]^t
- Standard line definition: ax+by+c=0
- Line defined as vectors perpendicular to vector L (dot product=0) L^tp=0

3-Vectors - scale does not matter

- Image point: [u,v,1] ^t
- Image line: [a,b,c] ^t

Two View Geometry

- When you have two images, what relations can you find between them?
- A homography matrix maps a point in one image to a point in another, but only under special cases:

1-both looking at the same plane (any R or T allowed) – can do planar mosaic

2-only rotation R, no translation T –can do panoramic mosaic

 Is there anything we can do for two arbitrary images – with unknown R & T that are not aimed at a plane?

Point->Line Mapping

- With any configuration with T!=0 we can find a point-to-line mapping
- A point in one image maps to a line in another image
- For a single camera, all points along a line in 3D space fall onto a single image point. Project all those points onto another camera, they appear as a line emanating from the image of the focal point of the first camera.
- Imagine a laser beam "shooting" out of Cam_1 , see the laser beam in second camera Cam_2 -will appear as a line.
- Therefore a point p₁ in Cam₁ maps to a line l₂ in Cam₂
- What is the relation?

Answer $I_2 = Fp_1$ F is the fundamental matrix (3x3)

• Since $I^tp = p^tI = 0$ for points p lying on line I, we can say an object at p_1 in Cam₁ must lie upon I_2 Cam₂ -therefore $p_2^tFp_1 = 0$

Matrices, World-Image and Image-Image Relationships

Projection Matrix

- Homogeneous point p as a function of world coords X
- Size P=3x4, not invertible (cannot go from image point to world point)

p=PX

Homography Matrix

- p=HX or $p_2=Hp_1$
- Homogeneous point p as a function of world planar coords X
- Or rotating but not translating camera, Homogeneous points p₁,p₂
- Point in one image maps to point in other image via H
- Size H=3x3, invertible (can go from image point to world planar point)

Fundamental Matrix

$p_{2}^{t}Fp_{1} = 0$

- Line $I_2 = Fp_1$ as a function of homogeneous point p_1
- Size F=3x3, not invertible (cannot go from point back to line, F contains T_x matrix, det(T_x)=0, cannot be inverted)

3-View Tensor

- $p_3 = T(p_1, p_2)$
- Homogeneous point p₃ in 3rd image as a function of homogeneous point p₁ in first image and p₂ in second image
- Works for arbitrary R and T between cameras, world not restricted to planar case
- Size tensor=3x3x3 (27 numbers)

Entities where scale doesn't matter

 All the following are independent of scale: each is represented by one more number than the degrees of freedom

Homogeneous point (2D point->3D line)

3 numbers, 2 dof (degrees of freedom)

Line

• 3 numbers, 2 dof

Projection Matrix

- Homogeneous point p as a function of world coords X
- 12 numbers, 11 dof

Homography Matrix

- Map a homogeneous point between a plane and image, or between rotated images
- 9 numbers, 8 dof

Fundamental Matrix

- Line $I_2 = Fp_1$ as a function of homogeneous point p_1
- 9 numbers, 8 dof

3-View Tensor

- Homogeneous point p_3 in 3rd image as a function of homogeneous point p_1 in first image and p_2 in second image
- 27 numbers, 26 dof

p₃=**T(p**₁, **p**₂)

p=HX or $p_2=Hp_1$

 $p_{2}^{t}Fp_{1} = 0$

p=PX

p=k[u, v, 1]^t

I=k[a, b, c]^t

view_homog_matrix.exe

H =

0.3762	-0.5720	268.0000
0.3401	0.3042	10.0000
-0.0004	-0.0003	1.0000

Recover Homography matrix from correspondences

Multiply up denominators

$$H_{31} \mathbf{u}_{1} \mathbf{u}_{2} + H_{32} \mathbf{v}_{1} \mathbf{u}_{2} + H_{33} \mathbf{u}_{2} = H_{11} \mathbf{u}_{1} + H_{12} \mathbf{v}_{1} + H_{13} H_{31} \mathbf{u}_{1} \mathbf{v}_{2} + H_{32} \mathbf{v}_{1} \mathbf{v}_{2} + H_{33} \mathbf{v}_{2} = H_{21} \mathbf{u}_{1} + H_{22} \mathbf{v}_{1} + H_{23}$$

Solving for AX=0 -gives us 2 equations/correspondence –need 4 correspondences

$$H_{31} U_1 U_2 + H_{32} V_1 U_2 + H_{33} U_2 - H_{11} U_1 - H_{12} V_1 - H_{13} = 0$$

$$H_{31} U_1 V_2 + H_{32} V_1 V_2 + H_{33} V_2 - H_{21} U_1 - H_{22} V_1 - H_{23} = 0$$

Each o	corresp	oonde	ence p	rovide	s two i	rows of A	matrix	
[-u ₁	-V ₁	-1	0	0	0	$u_1 u_2$	$v_1 u_2$	u ₂][
[0	0	0	-u ₁	-V ₁	-1	$\mathbf{u}_1 \mathbf{v}_2$	V_1V_2	\mathbf{v}_2] $\begin{bmatrix} \mathbf{H}_1 \\ \mathbf{H}_1 \end{bmatrix}$

Recover Homography matrix from correspondences

Each correspondence provides two rows of A matrix

[-u ₁	-V ₁	-1	0	0	0	$u_1 u_2$	$v_1 u_2$	u ₂]
[0]	0	0	- u ₁	-V ₁	-1	$\mathbf{u}_1 \mathbf{v}_2$	V_1V_2	v ₂]

8 equations, 9 unknowns (from 4 correspondences)

-u ₁₁ 0 -u ₁₂ 0 -u ₁₃ 0 -u ₁₄ 0	-V ₁₁ 0 -V ₁₂ 0 -V ₁₃ 0 -V ₁₄ 0	-1 0 -1 0 -1 0 -1 0	0 -u ₁₁ 0 -u ₁₂ 0 -u ₁₃ 0 -u ₁₄	0 -V ₁₁ 0 -V ₁₂ 0 -V ₁₃ 0 -V ₁₄	0 -1 0 -1 0 -1 0	$u_{11}u_{21} \\ u_{11}v_{21} \\ u_{12}u_{22} \\ u_{12}v_{22} \\ u_{13}u_{23} \\ u_{13}v_{23} \\ u_{14}u_{24} \\ u_{14}v_{24}$	$V_{11}U_{21}$ $V_{11}V_{21}$ $V_{12}U_{22}$ $V_{12}V_{22}$ $V_{13}U_{23}$ $V_{13}V_{23}$ $V_{14}U_{24}$ $V_{14}V_{24}$	$u_{21} \\ v_{21} \\ u_{22} \\ v_{22} \\ u_{23} \\ v_{23} \\ u_{24} \\ v_{24}$	$\begin{bmatrix} H_{11} \\ H_{12} \\ H_{13} \\ H_{21} \\ H_{22} \\ H_{23} \\ H_{31} \\ H_{32} \\ H_{33} \end{bmatrix}$	= 0
--	--	--	--	--	------------------------------------	--	--	--	--	-----

AX=b X=column vector of homography matrix elements Get last vector using SVD

Image Rectification using a homography matrix Mark Fiala 2010

Correspondences

u11=268;	v11=10;	u21=0;	v21=0;
u12=558;	v12=220;	u22=499;	v22=0;
u13=46;	v13=152;	u23=0;	v23=399;
u14=334;	v14=442;	u24=499;	v24=399;

u11=268;	v11=10;	u21=0;	v21=0;	[u,d,v]=svd(a)
u12=558; u13=46; u14=334;	v13=152; v14=442;	u23=0; u23=0; u24=499;	u23=399; u24=399; u24=399;	<pre>xtemp=v(8*9+1:9*9)' x=xtemp/xtemp(9) H=[x(1),x(2),x(3);x(4),x(5),x(6);x(7),x(8),x(9)]</pre>

a1	=[-u11,	-v11, -1,	0, 0, 0	∣, u11*u2	1, v11∗u21,	u21];
a2	=[0, 0,	0, -u11,	-v11, -	1, u11*v2	1, v11∗v21,	v21];
а3	=[-u12,	-v12, -1,	0, 0, 0	∣, u12*u2	2, v12*u22,	u22];
а4	=[0, 0,	0, -u12,	-v12, -	1, u12*v2	2, v12*v22,	v22];
a5	=[-u13,	-v13, -1,	0, 0, 0	, u13*u2	3, v13∗u23,	u23];
аó	=[0, 0,	0, -u13,	-v13, -	1, u13*v2	3, v13*v23,	v23];
a7	=[-u14,	-v14, -1,	0, 0, 0	∣, u14*u2	4, v14*u24,	u24];
a8	=[0, 0,	0, -u14,	-v14, -	1, u14*v2	4, v14*v24,	v24];

See matlab_lec9_solve_for_homog_matrix.txt

H =

0.9956 -1.1124 -0.0000	1.5566 1.5362 0.0011	-282.3961 282.7675 1.0000
Hinv =		
0.3762	-0.5720	268.0000
0.3401	0.3042	10.0000
-0.0004	-0.0003	1.0000

view_fund_matrix.exe

- view_homog_matrix.zip on course and Dr. Fiala webpage
- Point in left image (red cross, white arrow) maps to red line in right image
- Notice corner of shelves (red cross in left image) lies on line in right image
- Blue crosses are epipoles = projection of focal point of other camera
- Transpose of fundamental matrix is the reverse fundamental matrix mapping points in right image to lines in left (unlike reverse=matrix inverse with homographies)

view_fund_matrix.exe

- Space bar turns on grid mode shows epipolar lines
- Epipolar lines radiate from epipoles

Fundamental matrix for rectified images

- To do 'proper' stereo disparity, we needed rectified images
- images where a point (x1,y) in the 1st image appears at (x2,y) in the 2nd image (y is the same)
- Fundamental matrix is:

Recover Fundamental matrix from correspondences

$$\begin{bmatrix} u_{2} & v_{2} & 1 \end{bmatrix} \begin{bmatrix} F_{11} & F_{12} & F_{13} \\ F_{21} & F_{22} & F_{23} \\ F_{31} & F_{32} & F_{33} \end{bmatrix} \begin{bmatrix} u_{1} \\ v_{1} \\ 1 \end{bmatrix} = 0$$

Solving for AX=0 -gives us 1 equation/correspondence –need 8 correspondences

$$F_{11}u_{1}u_{2} + F_{12}V_{1}u_{2} + F_{13}u_{2}$$

+ $F_{21}u_{1}V_{2} + F_{22}V_{1}V_{2} + F_{23}V_{2}$
+ $F_{31}u_{1} + F_{32}V_{1} + F_{33} = 0$

Each correspondence provides one rows of A matrix –need 8 correspondences

$$\begin{bmatrix} u_{1}u_{2} & v_{1}u_{2} & u_{2} & u_{1}v_{2} & v_{1}v_{2} & v_{2} & u_{1} & v_{1} & 1 \end{bmatrix} \begin{bmatrix} F_{11} \\ F_{12} \\ F_{13} \\ F_{21} \\ F_{22} \\ \dots \end{bmatrix}$$

Recover Fundamental matrix from correspondences

Each correspondence provides one rows of A matrix

 $[u_1u_2 \ v_1u_2 \ u_2 \ u_1v_2 \ v_1v_2 \ v_2 \ u_1 \ v_1 \ 1]$

8 equations, 9 unknowns (from 8 correspondences)

$u_{11}u_{21}$	$v_{11}u_{21}$	u ₂₁	u ₁₁ v ₂₁	$v_{11}v_{21}$	V ₂₁	u ₁₁	V ₁₁	1	[F ₁₁]	
$u_{12}u_{22}$	$v_{12}u_{22}$	u ₂₂	$u_{12}v_{22}$	$v_{12}v_{22}$	V ₂₂	u ₁₂	V ₁₂	1	F ₁₂	
$u_{13}u_{23}$	v ₁₃ u ₂₃	u ₂₃	u ₁₃ v ₂₃	$V_{13}V_{23}$	V ₂₃	u ₁₃	V ₁₃	1	F ₁₃	
$u_{14}u_{24}$	$v_{14}u_{24}$	u ₂₄	$u_{14}v_{24}$	$V_{14}V_{24}$	V ₂₄	u ₁₄	V ₁₄	1	F ₂₁	•
u ₁₅ u ₂₅	v ₁₅ u ₂₅	u ₂₅	u ₁₅ v ₂₅	V ₁₅ V ₂₅	V ₂₅	u ₁₅	V ₁₅	1	F ₂₂	= 0
u ₁₆ u ₂₆	v ₁₆ u ₂₆	u ₂₆	u ₁₆ v ₂₆	V ₁₆ V ₂₆	V ₂₆	u ₁₆	V ₁₆	1	F ₂₃	
u ₁₇ u ₂₇	v ₁₇ u ₂₇	u ₂₇	u ₁₇ v ₂₇	V ₁₇ V ₂₇	V ₂₇	u ₁₇	V ₁₇	1	F ₃₁	
u ₁₈ u ₂₈	V ₁₈ U ₂₈	u ₂₈	u ₁₈ v ₂₈	V ₁₈ V ₂₈	V ₂₈	u ₁₈	V ₁₈	1	F ₃₂	
									F ₃₃	
_								-		

п

AX=b X=column vector of fundamental matrix elements Get last vector using SVD

Full system fundamental matrix example

from http://www.csse.uwa.edu.au/~pk/Research/MatlabFns/Robust/example/index.html
Steps:

- 1. Interest point detection
- 2. Correlation matching
- 3. RANSAC search for fundamental matrix
- 4. Inlier/outliers labeled

Input images

im2.jpg

Full system fundamental matrix example

from http://www.csse.uwa.edu.au/~pk/Research/MatlabFns/Robust/example/index.html

Interest points found

matches

Full system fundamental matrix example

from http://www.csse.uwa.edu.au/~pk/Research/MatlabFns/Robust/example/index.html

Inliers after Fund. Matrix found

Point to epipolar lines gui

