
2-View Geometry

Mark Fiala 
Ryerson University 

Mark.fiala@ryerson.ca    

CRV 2010 Tutorial Day



3-Vectors for image points and lines

2D Homogeneous Points
• Add 3rd number to a 2D point on image plane (add 1)
• Extend [u,v]t to [u,v,1] t
• 2D point is now represented by 3D line, can multiply entire vector by a 

constant and it’s still the same point 
k[u,v,1]t = [ku,kv,k]t = [u,v,1] t

2D Projective Geometry 
• Point is represented by 3D line passing through origin 

(2D point -> 3D vector)
p=k[u,v,1] t

• Image plane is horizontal plane at z=1
• Image point is where 3D line passes through image plane
• Image line represented by where 3D plane passes through image plane
• 3D plane passes through origin, defined by normal (perpendicular) 3D 

vector L=[a,b,c]t

• Standard line definition: ax+by+c=0
• Line defined as vectors perpendicular to vector L (dot product=0)

Ltp=0

3-Vectors – scale does not matter
• Image point: [u,v,1] t
• Image line: [a,b,c] t

Mark Fiala 2010



Homography and Fundamental Matrices

Two View Geometry
• When you have two images, what relations can you find between them?
• A homography matrix maps a point in one image to a point in another, but 

only under special cases: 
1-both looking at the same plane (any R or T allowed) – can

do planar mosaic
2-only rotation R, no translation T –can do panoramic mosaic

• Is there anything we can do for two arbitrary images – with unknown R & 
T that are not aimed at a plane?

Point->Line Mapping
• With any configuration with T!=0 we can find a point-to-line mapping
• A point in one image maps to a line in another image
• For a single camera, all points along a line in 3D space fall onto a single 

image point.  Project all those points onto another camera, they appear as 
a line emanating from the image of the focal point of the first camera.

• Imagine a laser beam “shooting” out of Cam1, see the laser beam in 
second camera Cam2 –will appear as a line.

• Therefore a point p1 in Cam1 maps to a line l2 in Cam2
• What is the relation?  

Answer l2 = Fp1 F is the fundamental matrix (3x3)
• Since ltp= ptl=0 for points p lying on line l, we can say an object at p1 in 

Cam1 must lie upon l2 Cam2 –therefore    p2
tFp1 =0
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Matrices, World-Image and Image-Image Relationships

Projection Matrix  p=PX
• Homogeneous point p as a function of world coords X
• Size P=3x4, not invertible (cannot go from image point to world point)

Homography Matrix  p=HX   or   p2= Hp1
• Homogeneous point p as a function of world planar coords X
• Or rotating but not translating camera, Homogeneous points p1,p2
• Point in one image maps to point in other image via H
• Size H=3x3, invertible (can go from image point to world planar point)

Fundamental Matrix  p2
tFp1 =0

• Line l2 = Fp1 as a function of homogeneous point p1
• Size F=3x3, not invertible (cannot go from point back to line, F contains Tx

matrix, det(Tx)=0, cannot be inverted)

3-View Tensor  p3= T(p1, p2 )
• Homogeneous point p3 in 3rd image as a function of homogeneous point p1

in first image and p2 in second image
• Works for arbitrary R and T between cameras, world not restricted to 

planar case
• Size tensor=3x3x3 (27 numbers)
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Entities where scale doesn’t matter
• All the following are independent of scale: each is represented by one 

more number than the degrees of freedom

Homogeneous point (2D point->3D line)  p=k[u, v, 1]t

• 3 numbers, 2 dof (degrees of freedom)

Line  l=k[a, b, c]t

• 3 numbers, 2 dof 

Projection Matrix  p=PX
• Homogeneous point p as a function of world coords X
• 12 numbers, 11 dof 

Homography Matrix  p=HX   or   p2= Hp1
• Map a homogeneous point between a plane and image, or between rotated images
• 9 numbers, 8 dof 

Fundamental Matrix  p2
tFp1 =0

• Line l2 = Fp1 as a function of homogeneous point p1
• 9 numbers, 8 dof 

3-View Tensor  p3= T(p1, p2 )
• Homogeneous point p3 in 3rd image as a function of homogeneous point p1 in first 

image and p2 in second image
• 27 numbers, 26 dof 
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Recover Homography matrix from correspondences 
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H11 H12 H13
H21 H22   H23 
H31 H32 H33

H11 u1 + H12 v1 + H13u2
v2
w2

= H31 u1 + H32 v1 + H33

Multiply up denominators

H21 u1 + H22 v1 + H23

H31 u1 + H32 v1 + H33

u2=

v2=

H31 u1u2 + H32 v1u2 + H33u2 = H11 u1 + H12 v1 + H13

H31 u1v2 + H32 v1v2 + H33 v2 = H21 u1 + H22 v1 + H23

Solving for AX=0 -gives us 2 equations/correspondence –need 4 correspondences

H31 u1u2 + H32v1u2 + H33 u2 - H11u1 - H12 v1 - H13 = 0
H31 u1v2 + H32 v1v2 + H33 v2 - H21u1 - H22 v1 - H23 = 0

Each correspondence provides two rows of A matrix
[-u1 -v1 -1    0   0   0 u1u2 v1u2 u2 ]
[ 0       0   0 -u1 -v1      -1 u1v2 v1v2 v2 ]

H11
H12
H13
…

u1
v1
w1



Recover Homography matrix from correspondences
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-u11 -v11     -1        0    0    0 u11u21 v11u21 u21
0        0         0       -u11   -v11   -1     u11v21 v11v21 v21

-u12      -v12 -1        0        0    0   u12u22 v12u22 u22
0        0         0       -u12   -v12 -1      u12v22 v12v22 v22

-u13 -v13    -1        0     0    0      u13u23 v13u23 u23
0        0         0       -u13   -v13 -1  u13v23 v13v23 v23

-u14 -v14     -1        0     0    0      u14u24 v14u24 u24
0        0         0       -u14   -v14   -1     u14v24 v14v24 v24

H11
H12
H13
H21
H22
H23
H31
H32
H33

= 0

8 equations, 9 unknowns  (from 4 correspondences)

AX=b X=column vector of homography matrix elements
Get last vector using SVD

Each correspondence provides two rows of A matrix

[-u1 -v1 -1    0   0   0 u1u2 v1u2 u2 ]
[ 0       0   0 -u1 -v1      -1 u1v2 v1v2 v2 ]



Image Rectification using a homography matrix

Correspondences

See matlab_lec9_solve_for_homog_matrix.txt

H

Hinv
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view_fund_matrix.exe

• view_homog_matrix.zip on course and Dr. Fiala webpage
• Point in left image (red cross, white arrow) maps to red line in right image
• Notice corner of shelves (red cross in left image) lies on line in right image
• Blue crosses are epipoles = projection of focal point of other camera
• Transpose of fundamental matrix is the reverse fundamental matrix mapping 

points in right image to lines in left (unlike reverse=matrix inverse with 
homographies)



view_fund_matrix.exe

• Space bar turns on grid mode – shows epipolar lines
• Epipolar lines radiate from epipoles



Fundamental matrix for rectified images
• To do ‘proper’ stereo disparity, we needed rectified images
• images where a point (x1,y) in the 1st image appears at (x2,y) in the 2nd

image (y is the same)
• Fundamental matrix is: 0  0  0

0  0 -1
0  1  0



Recover Fundamental matrix from correspondences 
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F11  F12 F13
F21   F22   F23 
F31 F32 F33

[ u2  v2  1 ]

= 0

Solving for AX=0 -gives us 1 equation/correspondence –need 8 correspondences

F11u1u2      + F12v1u2     + F13u2
+ F21u1v2      + F22v1v2     + F23v2
+ F31u1           + F32v1 + F33 =  0

Each correspondence provides one rows of A matrix –need 8 correspondences

[u1u2 v1u2 u2 u1v2 v1v2 v2 u1 v1 1 ] F11
F12
F13
F21
F22
…

u1
v1
1



Recover Fundamental matrix from correspondences
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u11u21 v11u21   u21 u11v21 v11v21 v21 u11 v11 1
u12u22 v12u22   u22 u12v22 v12v22 v22 u12 v12 1
u13u23 v13u23   u23 u13v23 v13v23 v23 u13 v13 1
u14u24 v14u24   u24 u14v24 v14v24 v24 u14 v14 1
u15u25 v15u25   u25 u15v25 v15v25 v25 u15 v15 1
u16u26 v16u26   u26 u16v26 v16v26 v26 u16 v16 1
u17u27 v17u27   u27 u17v27 v17v27 v27 u17 v17 1
u18u28 v18u28   u28 u18v28 v18v28 v28 u18 v18 1

F11
F12
F13
F21
F22
F23
F31
F32
F33

= 0

8 equations, 9 unknowns  (from 8 correspondences)

AX=b X=column vector of fundamental matrix elements
Get last vector using SVD

Each correspondence provides one rows of A matrix

[u1u2 v1u2 u2 u1v2 v1v2 v2 u1 v1 1 ]



Full system fundamental matrix example
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from http://www.csse.uwa.edu.au/~pk/Research/MatlabFns/Robust/example/index.html

Steps:
1. Interest point detection
2. Correlation matching
3. RANSAC search for fundamental matrix
4. Inlier/outliers labeled

Input images

http://www.csse.uwa.edu.au/~pk/Research/MatlabFns/Robust/example/index.html


Full system fundamental matrix example
Mark Fiala 2010

from http://www.csse.uwa.edu.au/~pk/Research/MatlabFns/Robust/example/index.html

Interest points found

matches

http://www.csse.uwa.edu.au/~pk/Research/MatlabFns/Robust/example/index.html


Full system fundamental matrix example
Mark Fiala 2010

from http://www.csse.uwa.edu.au/~pk/Research/MatlabFns/Robust/example/index.html

Inliers after Fund. Matrix found

Point to epipolar lines gui

http://www.csse.uwa.edu.au/~pk/Research/MatlabFns/Robust/example/index.html
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