CRV 2010

Tutorial Day

2-View Geometry

Mark Fiala
Ryerson University
Mark.fiala@ryerson.ca

2D Homogeneous Points

- Add $3^{\text {rd }}$ number to a 2D point on image plane (add 1)
- Extend [u,v] to [u,v,1] t
- 2D point is now represented by 3D line, can multiply entire vector by a constant and it's still the same point

$$
\mathrm{k}[\mathrm{u}, \mathrm{v}, 1]^{\mathrm{t}}=[\mathrm{ku}, \mathrm{kv}, \mathrm{k}]^{\mathrm{t}}=[\mathrm{u}, \mathrm{v}, 1]^{\mathrm{t}}
$$

2D Projective Geometry

- Point is represented by 3D line passing through origin
(2D point -> 3D vector) $p=k[u, v, 1]^{t}$
- Image plane is horizontal plane at $z=1$
- Image point is where 3D line passes through image plane
- Image line represented by where 3D plane passes through image plane
- 3D plane passes through origin, defined by normal (perpendicular) 3D vector $L=[a, b, c]^{t}$
- Standard line definition: $a x+b y+c=0$
- Line defined as vectors perpendicular to vector L (dot product=0) $L^{t} p=0$

3-Vectors - scale does not matter

- Image point:
[u,v,1] t
- Image line:
[a,b,c] t

Two View Geometry

- When you have two images, what relations can you find between them?
- A homography matrix maps a point in one image to a point in another, but only under special cases:

1-both looking at the same plane (any R or T allowed) - can do planar mosaic
2-only rotation R, no translation T-can do panoramic mosaic

- Is there anything we can do for two arbitrary images - with unknown R \& T that are not aimed at a plane?
Point->Line Mapping
- With any configuration with $\mathrm{T}!=0$ we can find a point-to-line mapping
- A point in one image maps to a line in another image
- For a single camera, all points along a line in 3D space fall onto a single image point. Project all those points onto another camera, they appear as a line emanating from the image of the focal point of the first camera.
- Imagine a laser beam "shooting" out of Cam 1 , see the laser beam in second camera Cam - will appear as a line.
- Therefore a point p_{1} in Cam_{1} maps to a line I_{2} in Cam_{2}
- What is the relation?

$$
\text { Answer } I_{2}=\mathrm{Fp}_{1} \mathrm{~F} \text { is the fundamental matrix }(3 \times 3)
$$

- Since $\left.\right|^{t} p=p^{t} l=0$ for points p lying on line I, we can say an object at p_{1} in Cam_{1} must lie upon $\mathrm{I}_{2} \mathrm{Cam}_{2}$-therefore $\mathrm{p}_{2}{ }^{\mathrm{t}} \mathrm{Fp}_{1}=0$

Matrices, World-I mage and I mage-I mage Relationships

Projection Matrix
 $$
p=P X
$$

- Homogeneous point p as a function of world coords X
- Size $P=3 \times 4$, not invertible (cannot go from image point to world point)

Homography Matrix

$$
p=H X \text { or } p_{2}=H p_{1}
$$

- Homogeneous point p as a function of world planar coords X
- Or rotating but not translating camera, Homogeneous points p_{1}, p_{2}
- Point in one image maps to point in other image via H
- Size $H=3 \times 3$, invertible (can go from image point to world planar point)

Fundamental Matrix

$$
\mathrm{p}_{2}{ }^{\mathrm{t}} \mathrm{~F} \mathrm{p}_{1}=0
$$

- Line $I_{2}=F p_{1}$ as a function of homogeneous point p_{1}
- Size $F=3 \times 3$, not invertible (cannot go from point back to line, F contains T_{x} matrix, $\operatorname{det}\left(T_{x}\right)=0$, cannot be inverted)

3-View Tensor

$$
p_{3}=T\left(p_{1}, p_{2}\right)
$$

- Homogeneous point p_{3} in $3^{\text {rd }}$ image as a function of homogeneous point p_{1} in first image and p_{2} in second image
- Works for arbitrary R and T between cameras, world not restricted to planar case
- \quad Size tensor $=3 \times 3 \times 3$ (27 numbers)

Entities where scale doesn't matter

- All the following are independent of scale: each is represented by one more number than the degrees of freedom

Homogeneous point (2D point->3D line)

- 3 numbers, 2 dof (degrees of freedom)

Line

$$
\begin{aligned}
& \mathrm{p}=\mathrm{k}[\mathrm{u}, \mathrm{v}, 1]^{\mathrm{t}} \\
& \mathrm{I}=\mathrm{k}[\mathrm{a}, \mathrm{~b}, \mathrm{c}]^{\mathrm{t}}
\end{aligned}
$$

- 3 numbers, 2 dof

Projection Matrix

$$
p=P X
$$

- Homogeneous point p as a function of world coords X
- 12 numbers, 11 dof

Homography Matrix $\quad \mathrm{p}=\mathrm{HX}$ or $\mathrm{p}_{2}=\mathrm{Hp}_{1}$

- Map a homogeneous point between a plane and image, or between rotated images
- 9 numbers, 8 dof

Fundamental Matrix

$$
p_{2}{ }^{\mathrm{t}} \mathrm{~F} \mathrm{p}_{1}=0
$$

- Line $I_{2}=F p_{1}$ as a function of homogeneous point p_{1}
- 9 numbers, 8 dof

3-View Tensor
$p_{3}=T\left(p_{1}, p_{2}\right)$

- Homogeneous point p_{3} in $3^{\text {rd }}$ image as a function of homogeneous point p_{1} in first image and p_{2} in second image
27 numbers, 26 dof

$H=$			
	0.3762	-0.5720	268.0090
	0.3401	0.3042	10.0909
	-0.0904	-0.0903	1.0900

Recover Homography matrix from correspondences

$$
\begin{aligned}
& {\left[\begin{array}{l}
u_{2} \\
v_{2} \\
w_{2}
\end{array}\right]=\left[\begin{array}{lll}
H_{11} & H_{12} & H_{13} \\
H_{21} & H_{22} & H_{23} \\
\mathrm{H}_{31} & H_{32} & H_{33}
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
v_{1} \\
w_{1}
\end{array}\right] \quad \mathbf{u}_{2}=\frac{\mathrm{H}_{11} u_{1}+H_{12} v_{1}+H_{13}}{H_{31} u_{1}+H_{32} v_{1}+H_{33}} } \\
& \mathbf{v}_{\mathbf{2}}=\frac{H_{21} u_{1}+H_{22} v_{1}+H_{23}}{H_{31} u_{1}+H_{32} v_{1}+H_{33}}
\end{aligned}
$$

Multiply up denominators

$$
\begin{aligned}
& \mathrm{H}_{31} \mathbf{u}_{\mathbf{1}} \mathbf{u}_{\mathbf{2}}+\mathrm{H}_{32} \mathbf{v}_{\mathbf{1}} \mathbf{u}_{\mathbf{2}}+\mathrm{H}_{33} \mathbf{u}_{\mathbf{2}}=\mathrm{H}_{11} \mathbf{u}_{\mathbf{1}}+\mathrm{H}_{12} \mathbf{v}_{\mathbf{1}}+\mathrm{H}_{13} \\
& \mathrm{H}_{31} \mathbf{u}_{\mathbf{1}} \mathbf{v}_{\mathbf{2}}+\mathrm{H}_{32} \mathbf{v}_{\mathbf{1}} \mathbf{v}_{\mathbf{2}}+\mathrm{H}_{33} \mathbf{v}_{\mathbf{2}}=\mathrm{H}_{21} \mathbf{u}_{\mathbf{1}}+\mathrm{H}_{22} \mathbf{v}_{\mathbf{1}}+\mathrm{H}_{23}
\end{aligned}
$$

Solving for $\mathrm{AX}=0$-gives us 2 equations/correspondence - need 4 correspondences

$$
\begin{aligned}
& \mathrm{H}_{31} \mathbf{u}_{\mathbf{1}} \mathbf{u}_{\mathbf{2}}+\mathrm{H}_{32} \mathbf{v}_{\mathbf{1}} \mathbf{u}_{\mathbf{2}}+\mathrm{H}_{33} \mathbf{u}_{\mathbf{2}}-\mathrm{H}_{11} \mathbf{u}_{\mathbf{1}}-\mathrm{H}_{12} \mathbf{v}_{\mathbf{1}}-\mathrm{H}_{13}=0 \\
& \mathrm{H}_{31} \mathbf{u}_{\mathbf{1}} \mathbf{v}_{\mathbf{2}}+\mathrm{H}_{32} \mathbf{v}_{\mathbf{1}} \mathbf{v}_{\mathbf{2}}+\mathrm{H}_{33} \mathbf{v}_{\mathbf{2}}-\mathrm{H}_{21} \mathbf{u}_{\mathbf{1}}-\mathrm{H}_{22} \mathbf{v}_{\mathbf{1}}-\mathrm{H}_{23}=0
\end{aligned}
$$

Each correspondence provides two rows of A matrix
$\left[\begin{array}{ccccccccc}{\left[-\mathbf{u}_{1}\right.} & -\mathbf{v}_{1} & -1 & 0 & 0 & 0 & \mathbf{u}_{1} \mathbf{u}_{2} & \mathbf{v}_{1} \mathbf{u}_{\mathbf{2}} & \mathbf{u}_{\mathbf{2}} \\ {[0} & 0 & 0 & -\mathbf{u}_{1} & -\mathbf{v}_{1} & -1 & \mathbf{u}_{1} \mathbf{v}_{\mathbf{2}} & \mathbf{v}_{\mathbf{1}} \mathbf{v}_{\mathbf{2}} & \mathbf{v}_{\mathbf{2}}\end{array}\right]\left[\begin{array}{l}\mathrm{H}_{11} \\ \mathrm{H}_{12} \\ \mathrm{H}_{13} \\ \cdots\end{array}\right]$

Recover Homography matrix from correspondences

Each correspondence provides two rows of A matrix
$\left[\begin{array}{ccccccccc}{\left[-\mathbf{u}_{1}\right.} & -\mathbf{v}_{1} & -1 & 0 & 0 & 0 & \mathbf{u}_{1} \mathbf{u}_{2} & \mathbf{v}_{1} \mathbf{u}_{2} & \mathbf{u}_{2} \\ {[0} & 0 & 0 & -\mathbf{u}_{1} & -\mathbf{v}_{1} & -1 & \mathbf{u}_{1} \mathbf{v}_{\mathbf{2}} & \mathbf{v}_{1} \mathbf{v}_{\mathbf{2}} & \mathbf{v}_{\mathbf{2}}\end{array}\right]$

8 equations, 9 unknowns (from 4 correspondences)

$-\mathbf{U}_{11}$	$-\mathrm{V}_{11}$	-1	0	0	0	$\mathbf{u}_{11} \mathbf{u}_{21}$	$\mathrm{v}_{11} \mathrm{U}_{21}$	U	H_{11}
0	0	0	$-\mathbf{U}_{11}$	$-\mathrm{V}_{11}$	-1	$u_{11} v_{21}$	$v_{11} v_{21}$	v_{21}	H_{12}
$-\mathrm{U}_{12}$	$-\mathrm{V}_{12}$	-1	0	0	0	$\mathrm{u}_{12} \mathrm{u}_{22}$	$\mathrm{v}_{12} \mathrm{u}_{22}$	u_{22}	H_{13}
0	0	0	$-\mathrm{U}_{12}$	$-\mathrm{V}_{12}$	-1	$u_{12} v_{22}$	$v_{12} v_{22}$	v_{22}	H_{21} H_{22}
$-\mathrm{U}_{13}$	$-\mathrm{V}_{13}$	-1	0	0	0	$\mathrm{u}_{13} \mathrm{u}_{23}$	$\mathrm{v}_{13} \mathrm{U}_{23}$	u_{23}	22
0	0	0	$-\mathbf{U}_{13}$	$-\mathrm{V}_{13}$	-1	$\mathrm{u}_{13} \mathrm{v}_{23}$	$v_{13} v_{23}$	v_{23}	H_{31}
$-\mathrm{U}_{14}$	$-\mathrm{V}_{14}$	-1	0	0	0	$\mathrm{u}_{14} \mathrm{U}_{24}$	$\mathrm{v}_{14} \mathrm{U}_{24}$	\mathbf{u}_{24}	H_{32}
0	0	0	$-\mathrm{U}_{14}$	$-\mathrm{V}_{14}$	-1	$u_{14} \mathrm{v}_{24}$	$v_{14} v_{24}$	v_{24}	H_{33}

$\mathbf{A X}=\mathbf{b} \quad \mathbf{X}=$ column vector of homography matrix elements Get last vector using SVD

I mage Rectification using a homography matrix

Correspondences

u11=268;	$v 11=10 ;$	$u 21=0 ;$	$v 21=0 ;$
$u 12=558 ;$	$v 12=220 ;$	$u 22=499 ;$	$v 22=0 ;$
$u 13=46 ;$	$v 13=152 ;$	$u 23=0 ;$	$v 23=399 ;$
$u 14=334 ;$	$v 14=442 ;$	$u 24=499 ;$	$v 24=399 ;$

$\mathrm{u} 11=268 ;$	$\mathrm{u} 11=10 ;$	$\mathrm{u} 21=6 ;$	$\mathrm{u} 21=0 ;$
$\mathrm{u} 12=558 ;$	$\mathrm{u} 12=226 ;$	$\mathrm{u} 22=499 ;$	$\mathrm{u} 22=6 ;$
$\mathrm{u} 13=46 ;$	$\mathrm{u} 13=152 ;$	$\mathrm{u} 23=6 ;$	$\mathrm{u} 23=399 ;$
$\mathrm{u} 14=334 ;$	$\mathrm{u} 14=442 ;$	$\mathrm{u} 24=499 ;$	$\mathrm{u} 24=399 ;$

$[u, d, v]=s v d(a)$
xtemp $=\mathrm{V}(8 * 9+1: 9 * 9)^{\prime}$
$\mathrm{x}=\mathrm{xtemp} / \mathrm{xtemp}$ (9)
$H=[x(1), x(2), x(3) ; x(4), x(5), x(6) ; x(7), x(8), x(9)]$

```
a1 =[-u11, -u11, -1, 6, 6, b, u11*u21, v11*u21, u21];
a2 =[ b, b, घ, -u11, -u11, -1, u11*u21, v11*u21, u21];
a3 =[-u12, -u12, -1, 0, 0, b, u12*u22, v12*u22, u22];
a4 =[b, b, घ, -u12, -u12, -1, u12*u22, v12*u22, u22];
a5 =[-u13, -v13, -1, b, b, b, u13*u23, v13*u23, u23];
a6 =[@, !, ©, -u13, -v13, -1, u13*u23, v13*u23, u23];
a7 =[-u14, -u14, -1, B, B, B, u14*u24, v14*u24, u24];
a8 =[0, 5, 0, -u14, -v14, -1, u14*u24, v14*U24, v24];
```

 See matlab_lec9_solve_for_homog_matrix.txt
 H $=$
0.9956
1.5566-282.3961
$-1.1124 \quad 1.5362 \quad 282.7675$
-6.0000
-. 0911
Hinu =

0.3762	-0.5720	268.0999
0.3401	0.3042	10.0909
-0.0094	-0.0903	1.0909

view_fund_matrix.exe

- view_homog_matrix.zip on course and Dr. Fiala webpage
- Point in left image (red cross, white arrow) maps to red line in right image
- Notice corner of shelves (red cross in left image) lies on line in right image
- Blue crosses are epipoles = projection of focal point of other camera
- Transpose of fundamental matrix is the reverse fundamental matrix mapping points in right image to lines in left (unlike reverse=matrix inverse with homographies)

view_fund_matrix.exe

- Space bar turns on grid mode - shows epipolar lines
- Epipolar lines radiate from epipoles

Fundamental matrix for rectified images

- To do 'proper' stereo disparity, we needed rectified images
- images where a point ($x 1, y$) in the $1^{\text {st }}$ image appears at ($x 2, y$) in the $2^{\text {nd }}$ image (y is the same)
- Fundamental matrix is:

0	0	0
0	0	-1
0	1	0

Recover Fundamental matrix from correspondences

$$
\left[\begin{array}{lll}
u_{2} & v_{2} & 1
\end{array}\right]\left[\begin{array}{lll}
F_{11} & F_{12} & F_{13} \\
F_{21} & F_{22} & F_{23} \\
F_{31} & F_{32} & F_{33}
\end{array}\right]\left[\begin{array}{c}
u_{1} \\
v_{1} \\
1
\end{array}\right]=\mathbf{0}
$$

Solving for $A X=0$-gives us 1 equation/correspondence - need 8 correspondences

$$
\begin{array}{lll}
\mathrm{F}_{11} \mathbf{u}_{\mathbf{1}} \mathbf{u}_{\mathbf{2}} & +\mathrm{F}_{12} \mathbf{v}_{\mathbf{1}} \mathbf{u}_{\mathbf{2}} & +\mathrm{F}_{13} \mathbf{u}_{\mathbf{2}} \\
+\mathrm{F}_{21} \mathbf{u}_{\mathbf{1}} \mathbf{v}_{\mathbf{2}} & +\mathrm{F}_{22} \mathbf{v}_{\mathbf{1}} \mathbf{v}_{\mathbf{2}} & +\mathrm{F}_{23} \mathbf{v}_{\mathbf{2}} \\
+\mathrm{F}_{31} \mathbf{u}_{\mathbf{1}} & +\mathrm{F}_{32} \mathbf{v}_{\mathbf{1}} & +\mathrm{F}_{33}=0
\end{array}
$$

Each correspondence provides one rows of A matrix - need 8 correspondences

$$
\left[\begin{array}{lllllllll}
\mathbf{u}_{1} \mathbf{u}_{2} & \mathbf{v}_{1} \mathbf{u}_{2} & \mathbf{u}_{2} & \mathbf{u}_{1} \mathbf{v}_{2} & \mathbf{v}_{1} \mathbf{v}_{2} & \mathbf{v}_{\mathbf{2}} & \mathbf{u}_{1} & \mathbf{v}_{1} & \mathbf{1}
\end{array}\right]\left[\begin{array}{l}
\mathrm{F}_{11} \\
\mathrm{~F}_{12} \\
\mathrm{~F}_{13} \\
\mathrm{~F}_{21} \\
\mathrm{~F}_{22} \\
\cdots
\end{array}\right]
$$

Recover Fundamental matrix from correspondences

Each correspondence provides one rows of A matrix
$\left[\begin{array}{lllllllll}u_{1} u_{2} & \mathbf{v}_{1} u_{2} & u_{2} & u_{1} \mathbf{v}_{2} & \mathbf{v}_{1} \mathbf{v}_{2} & \mathbf{v}_{2} & u_{1} & v_{1} & 1\end{array}\right]$

8 equations, 9 unknowns (from 8 correspondences)

$\mathrm{u}_{11} \mathrm{u}_{21}$	$v_{11} u_{21}$	\mathbf{u}_{21}	$u_{11} v_{21}$	$\mathrm{V}_{11} \mathrm{v}_{21}$	V_{21}	u_{11}	V_{11}	1	F_{11}
$\mathrm{u}_{12} \mathrm{u}_{22}$	$\mathrm{v}_{12} \mathrm{u}_{22}$	\mathbf{u}_{22}	$u_{12} v_{22}$	$\mathrm{v}_{12} \mathrm{~V}_{22}$	v_{22}	u_{12}	v_{12}	1	F_{12}
$\mathrm{u}_{13} \mathrm{U}_{23}$	$\mathrm{v}_{13} \mathrm{U}_{23}$	\mathbf{u}_{23}	$\mathbf{u}_{13} \mathbf{v}_{23}$	$\mathrm{v}_{13} \mathrm{v}_{23}$	v_{23}	u_{13}	V_{13}	1	F_{13}
$\mathrm{u}_{14} \mathrm{U}_{24}$	$\mathrm{v}_{14} \mathrm{U}_{24}$	u_{24}	$\mathrm{u}_{14} \mathrm{v}_{24}$	$\mathrm{V}_{14} \mathrm{~V}_{24}$	v_{24}	u_{14}	V_{14}	1	F_{21}
$\mathrm{u}_{15} \mathrm{U}_{25}$	$\mathrm{v}_{15} \mathrm{U}_{25}$	u_{25}	$\mathbf{u}_{15} \mathbf{v}_{25}$	$\mathrm{v}_{15} \mathrm{v}_{25}$	v_{25}	u_{15}	v_{15}	1	F_{22}
$\mathrm{u}_{16} \mathrm{U}_{26}$	$\mathrm{v}_{16} \mathrm{u}_{26}$	u_{26}	$\mathbf{u}_{16} \mathbf{v}_{26}$	$\mathrm{v}_{16} \mathrm{v}_{26}$	v_{26}	u_{16}	v_{16}	1	F_{23}
$\mathrm{u}_{17} \mathrm{U}_{27}$	$\mathrm{v}_{17} \mathrm{U}_{27}$	u_{27}	$\mathbf{u}_{17} \mathbf{v}^{27}$	$\mathrm{v}_{17} \mathrm{~V}_{27}$	v_{27}	u_{17}	V_{17}	1	F_{31}
$\mathrm{u}_{18} \mathrm{U}_{28}$	$\mathrm{v}_{18} \mathrm{U}_{28}$	u_{28}	$\mathrm{u}_{18} \mathrm{v}_{28}$	$\mathrm{V}_{18} \mathrm{~V}_{28}$	v_{28}	u_{18}	v_{18}	1	F_{32} $\mathrm{~F}_{33}$

$\mathbf{A X}=\mathbf{b} \quad \mathbf{X}=$ column vector of fundamental matrix elements Get last vector using SVD

Full system fundamental matrix example

from http://www.csse.uwa.edu.au/~pk/Research/MatlabFns/Robust/example/index.html Steps:

1. Interest point detection
2. Correlation matching
3. RANSAC search for fundamental matrix
4. Inlier/outliers labeled

Input images

Full system fundamental matrix example

Interest points found

Full system fundamental matrix example

from http://www.csse.uwa.edu.au/~pk/Research/MatlabFns/Robust/example/index.html
Inliers after Fund. Matrix found

Point to epipolar lines gui

