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Abstract

In this paper we consider the full cycle of Image Un-
derstanding (IU): the generation of 3D object hy-
potheses (inverse model) from images and their pro-
jections back onto image data (forward model) in
terms of Bayesian inference processes. Each subpro-
cess is framed as a local optimization problem based
on a component model and observations. The end
result is an IU system that not only provides a sym-
bolic description of scenes but also generates fully
3D versions of the scene being sensed so providing
validation criteria for the image annotation.
Keywords: Image Understanding, Bayesian meth-
ods, hierarchical hidden Markov random fields,
CAD-based Vision, Forestry Photo Interpretation,
Stochastic L-systems

1 Introduction

Image Understanding (IU), by definition, is con-
cerned with the interpretation of visualized data in
terms of the structures and processes that generated
them. These structures and processes can be ex-
clusively 2D, as in documents or handwriting, or,
more often than not, 3D, as occurs with human vi-
sion in navigation or scene understanding. Over the
past twenty years or so 2D IU systems have have
focused on statistical and structural pattern recog-
nition technologies, while the 3D systems have more
or less focused on Photogrammetry or CAD-based
approaches. The result of this has been the rapid
development of stochastic models for image process-
ing, feature extraction, Visual Learning and Pattern
Recognition in 2D. At the same time, in a parallel
community, there has been significant developments
in areas such as Photogrammetry, improved CAD-
based vision and model matching algorithms (see, for
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example, Hartley and Zisserman[14]). Only rarely do
these two areas come together in the development of
fully 3D systems that can be readily trained and ac-
commodate the variabilities that human perception
can. In this paper we explore the integration of these
two approaches into a fully trainable, adaptive 3D
system that exploits the ability of probabilistic mod-
els and Bayesian inference methods to perform IU.
Of particular importance is the exploration of how
to formulate the solution of the system components
in terms of common optimization principals.

In addition to the above aims, we also claim that
IU is particularly relevant when it can assist or re-
place humans in performing specific talks - particu-
larly as they occur in a circumscribed, well-defined
setting. In this case we have considered the task of
photo interpretation as used in the forestry indus-
try where professional photo interpreters are certi-
fied and employed on a regular basis as past of the
forestry inventory process. Fortunately, in this case,
there is a significant amount of expertise and knowl-
edge about what makes for reliable photo interpre-
tation in this context which provides an excellent
platform for investigating the proposed approach.

Perhaps the best way of documenting how ex-
pert photo interpreters interpret forestry images is to
examine what they are taught when being trained.
Summarizing Hall[13] the photo interpretation (PI)
procedure has the following components:

1. Terrain and forestry (stand and individual tree char-
acteristics) prior knowledge is critical.

2. Depth, stereo information about trees is required.

3. PI involves combining and reasoning about image
clues as to how they fit with prior knowledge.

4. Important image clues include: Shadow,
Tone(spectra/contrast), Texture (for example,
types of canopies), Pattern(distributions of trees
over a region), Shape (canopy shape), Size(canopy
size), Location and Association - related to terrain
knowledge.



5. PI involves reasoning about what is perceived with
what is known: integrating 2D image clues with 3D
models and vice-verse.

6. PI progresses from what is clearly interpretable to
the less clear.

Expert PI accuracy is informally reported to be in
the 70 — 80% range. On the other hand, an au-
tomated individual tree inventorization process via
airborne imaging faces a number of challenges in-
cluding the need for high spatial resolution images,
accurate image orthorectification and geo-referenced
images. Further, such systems are quite sensitive to
changing weather, sun position and seasonal varia-
tions in addition to the basic difficulty of segmenting
overlapping canopies of similar colour and texture -
conditions far more complex that aerial IU systems
focused on building, roads and manmade structures.
In spite of these challenges a number of systems have
already been investigated over the past twenty years
and they fall into two types of systems.
Image-Based Systems. Such approaches use sim-
plifying assumptions about forest images. For exam-
ple, [12, 19] use a token-based recognition approach
which assumes a high-level of contrast between the
tree crown and the surrounding area [10, 11, 12].
Tree canopies are detected and classified by a mix-
ture of ”valley-finding” (low intensity iso-contours),
peak intensity detection [28, 29] and texture, struc-
ture and contextual image features. The underlying
idea is to match (cross-correlate) pre-specified tree
crown image(s) with the image at hand[18].
Tree Model-Based Approaches. Tree model ap-
proaches use an explicit model of 3D tree crowns
to match trees in the supplied images. The STCI
system [21, 20] uses a template matching approach.
However, unlike the example-based approaches dis-
cussed above, the crown templates are synthesized
from a tree crown model. The upper part of
a tree crown (so-called ”sun crown”) is modeled
as a generalized ellipsoid of revolution and then
ray-tracing techniques are used to generate tem-
plates [16]. These systems still end up in cross-
correlating crown templates with image data.
Though useful in some areas like conifer planta-
tion inventories, all these methods fail with native
forests where there is significant canopy overlap and
mixed species, variations in pattern, shape and sizes.
Further, they do not offer methods for validating the
predicted PI nor fit with expert training procedures.
For these reasons we have explored a different type
of IU/PI model that does fit more closely to the PI
training model where the treatment of uncertainty
and inference processes play key roles in the inter-
play between what is known and what is perceived.
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Figure 1: Proposed Photo interpretation model based on
principles from training professional Photo Interpreters.

We have encapulated this in the model shown in
Fig. 1 where both 2D and 3D aspects of the IU pro-
cess are embedded and integrated into a unified prob-
abilistic inference context. Again, the key two ideas
behind this system are: one, to iterate through the
cycle of inferring 3D scenes and objects from image
segmentation, labeling and stereo, and then, in turn,
predicting images from such 3D information which,
again can be used by experts or computer systems
to infer more consistent segmentation and labeling
till there is consistency between forward and inverse
modeling processes. Two, to define each component
process in terms of an optimization problem whereby
the desired outcomes are derived in terms of MAP
(maximum posterior probabilities), given a compo-
nent model and observations.

2 The Model Components

2.1 Segmentation and Labeling

In recent years there has been significant develop-
ments in formulating image segmentation and label-
ing as dependent and parallel processes using hierar-
chical hidden Markov models. In such models image
annotation is viewed as defining labeling operators
over sets of hierarchical (multiscaled) Markov Ran-



dom Fields(MRF) with the use of Maximum Like-
lihood (ML) and MAP criteria [8, 27, 2, 17, 1, 3].
Our model is closest, but not identical to, that of
Cheng et. al. [3] using supervised learning to help
estimate the important features within and between
observation and label hierarchies. The basic model
is shown in Fig. 2. The aim is to derive the opti-
mal labelling of pixels given a model and observa-
tions. The labels, in turn, define regions: annotated
segmented regions. What differentiate our approach
from the others is that we explore a form of hierarchi-
cal constraint propagation using bijective operators
and tuning of the model parameters to best fit expert
annotation, and the use of colour images.

Figure 2: The basic hierarchical hidden Markov tree
(HHMT) model. Here only three levels (I — 1, I,l + 1) of the
multi-scale representation are shown. At each level there are
two random fields corresponding to observed pixels, Y, image
region labels defined by X. The bijection operations shown in
grey and black colours represent upward and downward sup-
port kernel operators and associated region label transitions
over movements upwards and downwards in scale encapsulat-
ing two types of contextual constrains.

In this model (see Fig. 2), each layer | consists
of two random fields to encode the hidden labelling
process (X!) and the observed image (Y!). The ith
node (pixel) for the hidden and observation random
fields are denoted by z! and y!, respectively. Since
the posterior (label) probability at any given layer
I, p(X'|Y"), is computational intractable we intro-
duce further assumptions which enable us to per-
form model parameters estimation in a feasible way.
These are:

1. In any given layer I, the observed random field Y*
is solely depended on the hidden states at the same
level, X'

(Yl |XALL YALL) (Yl |X ) (1)

where XALL yALL refer to the complete la-
belling/observation hierarchy. Further, each ob-
served data pixel is dependent only on its corre-
sponding state (label):

p(Y'|X") Hp(yllmz) (2)

2. The intra-layer hidden states are only dependent on
their adjacent layers, i.e.:

p(X'XAEE) = p(X'1X7) 3)

where X“LL refers to the whole hidden hierarchy,

and X% corresponds to the neighborhood layers of
X' e, X! and X'

3. In each layer [, the inter-layer hidden states (labels)
are independent of each other, that is:

p(X'|Y") = Hp(:vﬁlyﬁ)- (4)

Consequently, the proposed hierarchical hidden
Markov tree (HHMT) model (Fig. 2) is defined as:

A={(m, A1, Afo, Bl =1, ., L} (5)

where the upward state transition matrices AT are de-
fined by:

> (-1) =
AP @ 4) =p@d = jlos 7 =), (6)
The downward transition matrices A~ are defined by:
- - (O
A @g) =p@i™Y = jl9s =1). (7)

(1+1)

For position j in layer I, ds = i defines its con-

textual parents (clique, kernel), and 53(1_1) = J cor-
responds to its contextual children. In both cases,
these kernels are defined by indexed histogram (see
below). For each layer the prior probabilities of each
label is defined by:

m = p(X' =1). (8)

derived from the relative frequencies of expected
image labels at a given scale, [. The observation
matrices B! are defined by B = {B',l € [1..L]},
where B!(o,c) € B! characterize the likelihood of
the observed pixel values (0) at level [, given label
¢ € [1..C], which selected from a set of K Gaus-
sian mixtures (defining the observation “symbols”;
Gg = {Gr;k = 1,..,,K}) in the label-dependent
cluster space and corresponds, after normalization,
to

B'(0,¢) = p(y' = olz' = c). 9)

The clustering method for extracting discrete num-
bers of “observations” used here follows Bouman’s
Minimum Description Length (MDL [24]) criterion
based mixture of Gaussian method [1] for choosing
the number of clusters.

Optimization problem I: Initial pixel la-
belling: Select pixel labels that maximize the fol-
lowing MAP criterion

Xt = argr)r(lla;cc(p(Y’IX’,Gk)p(X’))




Optimization problem II: Segmentation and
Region Labelling. Given a model estimation pro-
cedure, initial estimates of pixel labels, image seg-
mentation and labeling reduces to that of determin-
ing the most likely pixel labeling over scales, given
the model and observed images

X' = argmax(p(Y| X1, Gu)p(X!| X )p(X"))

Brief details of the estimation and prediction proce-
dures follow.

Estimation. The initial estimates of the model are
obtained from expert annotated training images as
follows:

1. For each training image, construct a Gaussian pyra-
mid (where layer 1 to layer L correspond to the
finest to coarsest levels, respectively).

2. The finest layer is manually labelled, and then sub-
sampling (consistent with the upper frequency of
each pyramid layer) is performed to obtain initial
labels for the upper layers.

3. In the downward scanning phase, the transition ma-
trix A;,, ; is determined by moving the kernels over
the complete image layers [ 4+ 1 and [/, and contin-
ues in this direction until the finest layer is reached.
A similar method is used in the upward scanning
phase to determine A;"_l, L

4. The prior vector 7 and the state-dependent observa-
tion matrices B’s are determined from the Gaussian
mixture model for each class ¢ and layer [, using the
MDL mixture of Gaussians clustering model.

Once this initial model is obtained from the train-
ing images, the process of image segmentation and
labelling involves instantiating (and updating) the
model from new image data as follows.

To interpret (annotate) new images, upward-
downward recursion is used to propagate scene
labels across layers until they are as compatible as
possible with respect to the support kernel statistics.
That is, we use an MAP criterion:

X! = arg max p(X'|Y"). (10)
rzeX
Prediction. Consequently,the upward-downward
segmentation-annotation reduces to:
1. For a candidate image, generate the Gaussian pyra-
mid.
2. Naive Bayesian classifier: Use the MAP principle,

based purely on the B matrix and =, to obtain an
initial labelling of layer L (the coarsest layer):

L, L
o} = arg max p(zi|y;)
eLexL

p(ai|yi) = p(yi’ |z )p(ai).

3. Downward recursion using m, A~ and B from the
coarsest layer L to the finest layer 1:

5 = axg maxp(z}iy)
~ (1+1)
p(ailyi) = p(yilzi)p(aildsi ).
4. Upward recursion using m, At and B, from the
finest layer 1 to the coarsest layer L:

iy Iy, 1
@} = arg max p(ily;)

(1-1)
).

5. Iterate from step 3 to 4, and compute the log-
likelihood score:

p(xilyh) = p(yilzi)p(xids;

Q' =) "log) p(zi =clyi,ds)  (11)

L
Q* — Z ,lel
=1

where

,yl — D2X(l71)/P;
D is the size of the kernel(clique), P is the number
of pixels, Q' is the log-likelihood score for current
layer I, and Q* is for the image over all layers.

6. Repeat 1-5 until no label changes over all layers.

The convergence properties of such hierarchical re-
laxation operations have been studied before [6] and
prove convergence to local minima. Consequently
the initial pixel labeling plays an important role in
the robustness of this procedure.

Performance of segmenter-annotator. We
have used a region-based percentage overlap (PO)
measure between corresponding expert and pre-
dicted segmented and annotated regions using a
split-half design (half training and half unseen test
images). That is, for all predicted regions R; labelled
¢ in the image, we compute:

R;V R;

1 7

(12)
where A A B and A V B refer to the set intersection
and union of regions A, B, respectively. This pro-
vides an objective measure of how well the predicted
annotated regions fitted the observed ones. Our
forestry image database consisted of 24 , 1024 x 1536
24-bit RGB images of experimental forestry plots,
with an average of 65 trees per image. We have eval-
uated our model on 6 of these images where we had
acquired expert annotated of 6 x 64 = 384 trees.
These latter images were used for training and ob-

jective assessment of the model. The plots varied in
terms of the degree of mixture densities of spruce and



Plot type Spruce | Aspin
Pure Spruce | 80.60 —

Mixture 69.08 | 46.37
Fall mixture | 75.60 | 50.24

Table 1: Shows Percentage Overlap (PO) scores for: col-
umn 1 - Spruce, column 2 - Aspen over the three different plot
mixtures: pure spruce and mixture of Aspen and Spruce over
one 1024x1536 representative test image per type.

aspen and results for one such example are shown in
Fig. 3. The images are taken from Alberta Research
Council’s experimental farm at Vegreville, Alberta.
Throughout the simulations in this paper, four dif-
ferent classes (scene labels) were used as annotation:
Aspen, Spruce, Shadow and Ground. Gaussian pyra-
mid were used with o values of {2,4,8,16}, and the
image colour intensities were directly used as ob-
served features. For each such label, we have found
that the parameters which offer the best PO scores
occurred with the smallest kernels over all scales and
largest or near largest number of scales, i.e., 3x3 and
6, respectively. Table 1 summarizes performance
in terms of the PO scores and detection detection
scores for each type of condition.

2.2 The stereo component

As with segmentation and labeling, here we frame
the stereo problem as that of determining the most
likely depth (disparity) map given the disparity space
(a vector-valued image corresponding to differences
between left and right images pairs as a function of,
in this case, movements along the epipolar line[26]
- but not necessarily). Further, we assume that the
depth map is a Markov Random Field.
Optimization problem ITI: Select the optimal dis-
parity map, d*, associated with the reference view
that will maximize the posterior probability of the
disparity map given the observed disparity space Y
and intrinsic parameters 6, as

d" = argmaxp(d|f, y)

The Stereo Model. Let 1 = 1,--- ,n index a 2D
lattice of image pixels. let y; = {y;;} denote the left
(reference) view pixel intensities and y, = {y,;} de-
note the right view pixel intensities. Let y = {y;} de-
note a vector-valued image the same size as y; where
each vector component at each pixel corresponds to
the intensity difference between the left and right im-
ages for a given disparity: ds = [dmin,dmaz]- That
is, for each pixel position ¢ of the reference view there

(b)

(c) (d)

Figure 3: Shows (a) input image, (b) initially labeled pixels,
(c) final output of segmenter compared to (d), expert anno-
tation. Regions correspond to Ground, Aspen, Spruce and
Shadows.

is a vector ¥ = y; whose components, o3 (k € ds),
encode the image intensity difference value with re-
spect to disparity k.

Let d = d;,d; € ds denote a Markov Random
Field (MRF) of disparity valued random variables,
one per pixel, where a possible configuration of d
defines a single disparity map derived from the left
and right images. Clearly, the Markov property of



the MRF places constraints on a pixel’s disparities
as a function of its neigbourhood disparities. From
this perspective, the stereo problem reduces to that
of searching for an optimal configuration of d which
minimizes a cost function defined over the left and
right image pairs, intensity difference distributions,
and associated MRF constraints using a Bayesian
formulation as schematically shown in Fig. 4. Similar
to the area of image reconstruction [15] [25], we de-
rive a search algorithm using sampling techniques [9]
for learning the hyper-parameters and use “Loopy
Belief Propagation” [30] for deriving the optimal d.
Bayesian Analysis. As shown in Fig. 4, there are
three components in the model: the disparity space
Y; the MRF disparity map d which indexes, one site
for one vector in y € Y, a distribution of the dispar-
ity of the given site; and the hyper-parameters, o’s
= 6. Because of the uncertainty of 6 for different im-
age pairs, Bayesian analysis treats 6 as unknown and
assigns prior densities for #. Since we can establish
the likelihood p(y|d) and the priors p(d|f) and p(6),
we can define the posterior as:

p(d,0ly) < p(y|d) p(d|6) p().

MRF, N

disparity space
N*D

Figure 4: The stereo model. Here the grey circle denotes the
observable variable (y: the disparity-indexed intensity differ-
ence maps, also called disparity space, are between the left
and right images and forming a 3D volume, the same size of
the MRF d with each site containing a size D vector) while the
white circles correspond to unobservable variables. The d node
represents the inferred disparity MRF relative to the neigh-
bour scale size, o4, which is sampled from a scaled Inv — x?
distribution with the scale o4, with v1 degree of freedom.
Similarly, the RF (Random Field) parameters apply to the
observable image intensity difference volume with parameters
0y, and vg.

Our task is now two-fold. First, we need to infer
the MAP disparity map d* from:

d* = argmax p(d|6”, y)

where 6* denotes the optimal estimate.

For computational efficiency we only calculate the
mode (MAP) instead of sampling the whole poste-
rior distribution (full conditional probability) of d.
Loopy belief propagation (BP) [30] has been theo-
retically and eperimentally proven to suffice for this
purpose (see below and for further detail, and refer
to [30]). Second, we need to derive the adaptive
estimation of hyper-parameters, 6,

o = /d p(6ld)p(dly, 6)dd

Eaqjy,0(p(6]d))

with either direct sampling or MCMC (Markov
Chain Monte Carlo [9]), which draws dependent
samples from the posterior of §. That is, using
MCMC we can actually evaluate the whole poste-
rior distribution which incorporates our uncertainty
of 6 expressed in the prior, p(6).

The data and prior models. Here we consider the
data (likelihood) and prior models as the following
[25] unified functional form:

W) = s e {1 ulelown)}

where: .
K]
u(z|o,p) = X,: (1)
is the energy function; x represents a random field;
p(+,-) is the potential function with scale parameter
o € (0,00) and shape parameter p € [1,2].

One reason for choosing this function is that the
potential function p(-,-) unifies many existing func-
tional forms, both convex and non-convex, into one
general representation[15]. It includes the General-
ized Gaussian distribution:

s
p(=5p) = |zifol” (13)
and when p = 2, the Gaussian distribution:
T
p(=,2) = (z:i/0)?. (14)

g

As shown in Fig. 5, the Generalized Gaussian
density function covers a spectrum of density func-
tions with the shape varies significantly, from a
more edge-preserving function with p = 1 (also
called “double exponential density function”), to a
smoother function with p = 2 (gaussian density func-
tion).

Here we model the probability of the disparity
space (the data model) given the disparity map (re-
lated to the hyper-parameters) as:
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Figure 5: Examples of the Generalized Gaussian distribu-
tion. Left: double exponential distribution when taking the
shape value p = 1 and the scale value ¢ = 1; Right: normal
distribution when taking the shape value p = 2 and the scale
value 0 = 1.

pold 0y = e { -2 1)
oy Dy
where o, corresponds to the “scale” parameter and
py corresponds to the “shape” parameter for the data
model.
Similarly, the Gibbs prior p(d|f) of the MRF is
modeled by:

N 1 - _u(d|ad,pd)
pdonns) = sz {1720 o)

where the energy function is slightly different due to

the MRF:

d; — dy,
0d

u(dlog,pa) =Y, p

Jr~k

5pd) (17)

for {j,k} € n corresponding to all possible configu-
rations of neighbouring pixels, j and k. Notice that
2(pq) in Eq.16 is the partition function (normaliz-
ing constant) which is, in general, computational in-
tractable.

Update algorithm. Again, although the sampling
order can be chosen at random, a fixed sampling or-
der is used here. The update procedure simply in-
volves selecting an initial depth map. From this we
can then compute the full conditional distributions of
the depth dependent intensity distribution function
from which, using MAP, we determine the optimal
depth value at each pixel. Given these values, and
the assumed MRF model, we can then update the
depth values and, again, in turn, the intensity dis-
parity distributions - till convergence. More formally,
we have

1. Initialization. The hyper-parameters oy, 04, p, and
pa are initialized to fixed values.

2. The MAP disparity map d is inferred via loopy belief
propagation.
3. Update the distribution of o, from its full condi-

tional probability. This is done by directly sampling
from the Inv — x? density function.

4. Update the distribution of p, from its full condi-
tional probability. This step is done via Metropolis
sampling (refer to Sec..

5. Update the distribution of o4 from its full con-
ditional probability by directly sampling from a
Inv — x? density.

6. Update the distribution of pg from its full condi-
tional probability. Because an MRF is involved, we
need to estimate the partition function up to a con-
stant value, and use the Metropolis algorithm to
update.

7. repeat steps 2 through 6 till reach a predefined num-
ber of iterations.

For detail description of this stereo component,
please refer to [4].
Experimental Results Fig. 6 show an exemplar re-
sult of the stereo module. Since no stereo pairs were
available for this project as yet, (a) and (b) are the
left /right view of the input image pair for a synthetic
forest consisting of 8 spruce trees and 8 aspen trees,
with the terrestrial view (c). The stereo module out-
puts the initial disparity map (e) and consequently
converge to the final disparity map (f). (d) shows
corresponding ground truth disparity/depth values
with an RMS difference to the predicted (f)of 0.78
using 8 discrete disparity values for the canopy re-
gions alone (approximately 1 in 8 error rate).

2.3 Tree Generation and Fitting to
3D Labeled Regions

Here we develop a stochastic L-systems model. The
concept behind L-Systems is that complex biolog-
ical objects can be computer generated by succes-
sively replacing parts of a simple initial object using
a set of rewriting or production rules each consist-
ing of a specific geometric operation on an object.
They are widely used to create plants and fractal
objects [22]. Each L-System object is ultimately de-
fined as a string generated from an initial string, the
aziom, and a set of rewriting rules called produc-
tions. In each step of rewriting the axiom symbols
are replaced by these productions. The number of
rewriting steps is called recursive depth.
A simple example of L-Systems is given below:



Figure 6: Experiment on one of the synthetic forest image
pairs using the Generalized Gaussian model. (a) and (b) show
the left /right view of the trees: eight aspens and eight spruces,
with the side view (c). (d) is the ground-truth disparity map
of (a); (e) is the disparity map of (a) at ¢ = 0 step, and (f) is
the disparity map at ¢ = 10 step.

axiom: ab

rule 1: a -> bb

rule 2: b->a

Final strings generated after different steps:

step 1: bba

step 2: aabb

step 3: bbbbaa

Upon completion of these rewriting processes a
final string, termed L-String, is generated that cor-
responds to a set of geometric operations described
by “turtle” graphics [22]. The turtle interpretation
converts the resulting L-Strings into meaningful 3D
geometrical models derived from turtle graphics. In
3D, the state of a turtle is defined by its position and
three mutually perpendicular orientation vectors H,

,and U that indicate the turtle’s heading, the di-
rection to the left and up direction[22]. Imagining
that a turtle in 3D space moves forward, rotates,
etc. The trail of the turtle can be considered as ge-
ometrical shapes and it can be recovered by repeat-
ing its movements in order. Meaningful symbols in
L-Strings are associated with these kinds of move-
ments, or transformations.

The interpretations of some symbols are given be-
low. Some symbols are associated with numerical
parameters, and these parameters are also very im-

.Axiom
NNSNNSNNSNNSNNSNNSNNSNNSNNB

.Rules 1: 5
S='(.9)!(.9)
N=tF[&'(0.8)\LBL|zL] > (137)[2&'(.7)\LBL|2L] > (137)
B=tF[-'(.8)!(.9)$LCL|zL] (.9)!(.9)C
C=tF[+'(.8)!(.9)$LBL|zL]' (.9)!(.9)B
L=[+f—-f—f—-(120)f - f — f]

Table 2: A deterministic L-System rule description for gen-
erating a conifer

portant to the appearances of the final objects:

e “F” : Move forward a step of unit length and
connect the new position with the last position
by a line segment.

e “F(a)” : Move forward a step of length a and
connect the new position with the last position
by a line segment.

o “47: Turn left by a default angle(counter clock-
wise) along the up axis.

e “+(a)” : Turn left by angle(counter clockwise)
a along the up axis.

“2 . Turn right by a default angle (counter
clockwise) along the up axis.

e “~(a)” : Turn right by angle (counter clockwise)
a along the up axis.

Figure 7: Shows the conifer generated by the deterministic
L-System defined in Table 2.

Stochastic L-Systems. By rewriting opera-
tions L-Systems can generate very complicated ob-
jects as shown in Fig.7. These objects are always
fractal in the sense that the rewriting rules used are
the same. The results of L-Systems are predictable,



since all the operations are determinate. Stochas-
tic L-Systems have evolved to overcome this prob-
lem by the introduction of probabilistic transitions
between symbols (turtle operators), thus provide a
biologically inspired statistical model' For example,
the productions :

epl:a—(0.7)ba
ep2:a—(03)ca

are 2 rewriting rules for the letter a. In one
derivation step, either pl or p2 are applied to each
occurrence of a according to the given probabilities:
(0.7,0.3).

This concept of probability-based selection of turtle
operators needs to be formulated in terms of the
rewriting form of L-Systems and for this reason,
in the following section, we show how this can be
accomplished via the use of a Hierarchical Hidden
Markov Model( HHMM).

Hierarchical Hidden Markov Model L-
Systems. Stochastic L-systems can generate
objects with different structures, but cannot change
the parameters of turtle operations. While HHMM
L-Systems allow us to implement similar changes
in the probabilistic formulation of Stochastic L-
Systems with varied numerical parameters of the
turtle operations. These are inherit from HMMs’
transition matrices and observation matrices respec-
tively.

We use the HMM nomenclature of Rabiner [23]
where there exists a statistical model, a set of states,
Si, and a set of observation symbols, O;. Each sta-
tistical model, a discrete HMM, A, consists of three
components A = {4, B,n} having N states and M
distinct observation symbols; where A = {a;;} is an
N x N state transition probability matrix and

aij = Plg+1 = Sjlae = Si, (18)

B = {b;j(k)} is an N x M matrix which is the
probability distribution of observation symbol, o,
given state j, where

bj(k) = Plo = klg = Sj],

1<i,j<N.

I<j<N,1<k<M,

(19)
and m = {m;} is the initial state distribution where
m=Plp=8], 1<i<N. (20

In HMM L-Systems the states include turtle oper-
ations, productions operations: F,+,—,G, E, R, e,
etc.

Tdeally we can learn this statistical model from both ob-
served images and prior knowledge, but currently we set the
model solely based on the prior knowledge from forestry sci-
ence.

Symbolsset: { NaMELBD*! tFz&+-> €&}

Rules:
e E=LBL|zL &
e L={+-f-f-(120)f-f-f} £
e« N=aM'l &
B matrix
State Means STD
‘ 0.95 0.05
! 0.95 0.05
Probability vector of super-state M
Observations | 0 1 2 3
Probabilities | 0.05 0.1 0.75 0.1
e a=tF&
B matrix
State Means STD
F 1 0.1
e M =z&'E>&
71 Vector
z & ' ! E > &
05 05 O 0 0 0 0
B matrix
State | Means STD
& 40 10
' 0.7 0.01
! 0.7 0.01
> 137 10
¢« B=aD'B&
B matrix
State Means STD
‘ 0.9 0.02
! 0.9 0.02
e D={L+-"'EE}
71 vector
L + - ‘ ! E &
08 01 01 O 0 0 0
A matrix
L + - ‘ ! E £
L 0 05 05 O 0 0 0
+ 0 0 0 1 0 0 0
- 0 0 0 1 0 0 0
‘ 0 0 0 0 1 0 0
! 0 0 0 0 0 09 01
E 0 0 0 0 0 0 1
B matrix
State Means STD
' 0.9 0.02
! 0.9 0.02
+ 35 10
— 35 10

Figure 8: An HHMM L-System models developed from L-
System rules shown in Table.2. Transition matrices which are
mainly deterministic are not shown in the tables.

The observations of the HMM are rewrite vari-
able combinations of these states F,+,—,G,E,R



with numerical parameter values. Recursively, the
F,+,—,G, E, R combined operators encoded within
these combinations also include the productions rules
of the L-System and so more HMMs are used to
model these rules and so on. This structure is
defined by a hierarchy and so it is appropriate
to call it a type of Hierarchical Hidden Markov
Model(HHMM) 2. All the production symbols from
the axiom (the first level of the hierarchy) are re-
placed by their HMMs which generate (stochastic)
L-Strings by Monte Carlo sampling of the underly-
ing probability densities. Once computed, on the
next level, production symbols in this L-String will
be further replaced by observations inferred from the
HMMs, again. This rewriting procedure will iterate
till no HMM can be applied or the specified iteration
depth is reached. There are three different states in
this HHMM:

e Type 1. States whose observations are turtle oper-
ation symbols and not replaceable, such that these
states can only be leaf nodes of HHMM.

e Type 2. States which are replaceable. These states
are equivalent to productions. There is a special
type of state termed “super-states”.

Each super-state is followed by an integer number n,
which indicates this super-state will be repeatedly
replaced by its sub-HMM n times. For example, X
is a super-states, and X (2) means the state X will
repeat itself twice, and it is the same as X X.

The benefit of super-states is that more constraints
can be applied to control the generation procedure.
For example, an HMM B is used to create a
branch. Using the HMM, it is difficult to control
the number of B in the observations by adjusting
the transition matrix parameters. However, by
super-states, the number of branches can be easily
controlled by adjusting their observations vectors.
These observation vectors can be gaussian models,
probability vectors, etc.

e Type 3. Terminal states, which indicate the end of
HMM sampling processes.

To this stage we have developed an HHMM for
the generation of 3D objects. To fit these statis-
tical models to labeled range map regions we have
explored two procedures: one, the fitting of conical
models to labeled segmented regions and, two, gen-
erating the Visual Hull (VH) of objects constructed
from multiple images.

Optimization problem IV. Here we only consider
the first approach using least squares methods. The

2There are many different formulations of hierarchical hid-
den Markov models and this is most similar to the one dis-
cussed in Singer|[7]

Figure 9: Shows four examples of a conifer generated by the
HHMM-L System defined in 8 and to be compared with the
deterministic version shown in Fig.7

aim is to maximize the fitting of the selected 3D tree
model T; from a pool of prototyped cone-like tree
models T(¢(t)) € {T(¢(1)),,T(#(T))} °, given
both the 3D inferred convex hull (V H) of the region
J (R;) which is determined by the disparity map of
this region, and the label(tree type t) of this region,
as

Tr,; (¢(t)) = arg r;l(atgc(p(T@(t))/ VH(R;))

After fitting the cones to the tree canopies we
can then fit a tree generated by the HHMM L-system
models into each cone. Branches are generated in or-
der from roots up. Whenever a branches is accepted,
its distance error is minimized, i.e. the branch is fully
inside the cone, and it is as close as possible to the
cone’s boundary.

2.4 Results: Validation/Update

The end result of these four optimization processes
is the generation of a fully 3D forestry model from
the image data so enabling different views and pos-
sible verification of the original labeling solution. As
implied in Fig. 1 the aim of this type of approach to
IU is to provide objective methods for verifying im-
age annotation by using methods that can infer the
underlying 3D model and, where appropriate, actu-
ally predict the initial image and segmentation used
to generate the 3D model. Fig. 10 shows examples
of this where equivalent images are generated from
simple CAD-cone models with conifer and aspen tex-
ture maps and also S-LS models for the same data.
At this stage we have not fully developed the inte-
gration model for forward and backward predictions

3Here the 3D transformation ¢(t) is the super-ellipsoid
function, the same 3D tree model as used in [16]



but, rather, compare regions using expert annota-
tions of both images. These resulted in near perfect
overlap.

Figure 10: The 3D estimated results of the synthesized forest
image (Fig. 6 (a)), (a): aerial view of CAD models, (b): aerial
view of HHMM L-System trees fitted inside each CAD models,
(c): labeled regions, (d): side view of the predicted HHMM
L-System trees.

3 Conclusion and Future Work

In this paper we have considered the cycle of IU
in terms of a common Bayesian inference approach
where components are estimated at each stage by
solving a Maximum Likelihood (ML) or MAP prob-
lem. We have also shown how this type of approach
can generate 3D models and image predictions that
can be compared either manually or automatically to
original data for validation purposes. As to whether
it is useful to fully and automatically ”close-the-
loop” is still an open question let alone the appro-
priate algorithm to use. For example, the predicted
image could well be segmented by the same algo-
rithm and the predicted regions compared to those
predicted from the original image in order to up-
date evidence for region labeling and tree identifi-
cation. However, this may only propagate errors in
initial segmentation so it is not fully clear that it
would be generally useful. In the case of areas like
forestry, cartography, medical image interpretation,
where there is need to human checking of results the
current ability to generate the 3D scene models and
images from any view angle for human comparison
with the predicted annotated data are the more use-
ful outcomes of this work.
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