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Abstract

We review different functions involved in visual
perception that have been integrated by a model
based on the biased competition hypothesis. Atten-
tional top-down bias guides the dynamics to con-
centrate at a given spatial location or on given fea-
tures. The model integrates, in a unifying form, the
explanation of several existing types of experimen-
tal data obtained at different levels of investigation.
At the microscopic level, single cell recordings are
simulated. At the mesoscopic level of cortical ar-
eas, results of functional magnetic resonance imag-
ing (fMRI) studies are reproduced. Finally, at the
macroscopic level, psychophysical experiments like
visual search tasks are also described by the model.
Keywords: visual attention, computational neuro-
science, biased competition, theoretical model

1 Introduction

To understand how the brain works, including how it
functions in vision it is necessary to combine differ-
ent approaches, including neural computation. Neu-
rophysiology at the single neuron level is needed
because this is the level at which information is
exchanged between the computing elements of the
brain. Evidence from neuropsychology is needed to
help understand what different parts of the system
do and what each part is necessary for. Neuroimag-
ing is useful to indicate where in the human brain
different processes take place, and to show which
functions can be dissociated from each other. Knowl-
edge of the biophysical and synaptic properties of
neurons is essential to understand how the comput-
ing elements of the brain work, and therefore what
the building blocks of biologically realistic computa-
tional models should be. Knowledge of the anatomi-
cal and functional architecture of the cortex is needed

to show what types of neuronal network actually per-
form the computation. And finally the approach of
neural computation is needed, as this is required to
link together all the empirical evidence to produce
an understanding of how the system actually works.
This review utilizes evidence from some of these dis-
ciplines to develop an understanding of how vision is
implemented by processing in the brain, focusing on
visual attentional mechanisms.

The dominant neurobiological hypothesis to ac-
count for attentional selection is that attention serves
to enhance the responses of neurons representing
stimuli at a single relevant location in the visual field.
This enhancement model is related to the metaphor
for focal attention in terms of a spotlight [1, 2]. This
metaphor postulates a spotlight of attention which il-
luminates a portion of the field of view where stimuli
are processed in higher detail while the information
outside the spotlight is filtered out. According to this
classical view, a relevant object in a cluttered scene
is found by rapidly shifting the spotlight from one
object in the scene to the next one, until the target
is found. Therefore, according to this assumption
the concept of attention is based on explicit serial
mechanisms.

There exists an alternative mechanism for selec-
tive attention, the biased competition model [3, 4, 5,
6]. According to this model, the enhancement of at-
tention on neuronal responses is understood in the
context of competition among all of the stimuli in
the visual field. The biased competition hypothesis
states that the multiple stimuli in the visual field
activate populations of neurons that engage in com-
petitive mechanisms. Attending to a stimulus at a
particular location or with a particular feature biases
this competition in favor of neurons that respond to
the location or the features of the attended stimulus.
This attentional effect is produced by generating sig-



nals within areas outside the visual cortex which are
then fed back to extrastriate areas, where they bias
the competition such that when multiple stimuli ap-
pear in the visual field, the cells representing the
attended stimulus ”win”, thereby suppressing cells
representing distracting stimuli. According to this
line of work, attention appears as an emergent prop-
erty of competitive interactions that work in parallel
across the visual field.

Visual attention can function in two distinct
modes: spatial focal attention which can be visual-
ized as a spotlight that illuminates a certain location
of visual space for focused visual analysis, and object
attention which is spatially dispersed and with which
a target object can be searched for in parallel over
a large area of visual space. Duncan [4] proposed
that both modes of operation are manifestations of
a top-down selection process. In spatial attention,
the selection is focused in the spatial dimension and
spread in the feature dimension. In object attention,
the selection is focused in the feature dimension and
spread in the spatial attention.

In the following section we review a number of ex-
perimental studies that provide insights into the neu-
ral basis of attention. In section 3 we present a neu-
rodynamical model that addresses the issues of at-
tentional mechanisms and in section 4 we show that
the model can reproduce the findings of a number of
attention-related neurophysiological experiments as
well as the results of psychophysical experiments.

2 Experimental studies

2.1 Single cell experiments

Reynolds et al. [7] first examined the presence of
competitive interactions in the absence of attentional
effects, making the monkey attend to a location far
outside the receptive field of the neuron they were
recording. They compared the firing activity re-
sponse of the neuron when a single reference stimulus
was located within the receptive field to the response
when a probe stimulus was added to the visual field.
When the probe was added to the field, the activ-
ity of the neuron was shifted towards the activity
level that would have been evoked had the probe
appeared alone. When the reference is an effective
stimulus (high response) and the probe is an inef-
fective stimulus (low response) the firing activity is
suppressed after adding the probe. In contrast, the
response of the cell increased when an effective probe
stimulus was added to an ineffective reference stim-
ulus. The study also tested attentional modulatory

effects independently by repeating the same experi-
ment with the difference that the monkey attended
to the reference stimulus within the receptive field of
the recorded neuron. The effect of the attention on
the response of the V2 neuron was to almost compen-
sate the suppressive or excitatory effect of the probe.
That is, if the probe caused a suppression of the ac-
tivity response to the reference when the attention
was outside the receptive field, then attending to the
reference restored the neuron’s activity to the level
corresponding to the case of the reference stimulus
alone. Similarly, if the probe stimulus had increased
the neuron’s level of activity, attending to the refer-
ence stimulus compensates the response by shifting
the activity to the level that had been recorded when
the reference was presented alone.

2.2 FMRI experiments

The experimental studies of Kastner et al. [8, 9]
show that when multiple stimuli are present simul-
taneously in the visual field, their cortical represen-
tations within the object recognition pathway inter-
act in a competitive, suppressive fashion. The au-
thors also observed that directing attention to one
of the stimuli counteracts the suppressive influence
of nearby stimuli. These experimental results were
obtained by applying the functional magnetic res-
onance imaging (fMRI) technique in humans. The
authors designed an experiment and different condi-
tions were examined. In the first experimental con-
dition the authors tested the presence of suppressive
interactions among stimuli presented simultaneously
within the visual field in the absence of directed at-
tention, in the second experimental condition they
investigated the influence of spatially directed atten-
tion on the suppressive interactions, and in the third
condition they analyzed the neural activity during
directed attention but in the absence of visual stim-
ulation. The authors observed that, because of the
mutual suppression induced by competitively inter-
acting stimuli, the fMRI signals were smaller during
the simultaneous presentations than during the se-
quential presentations. In the second part of the
experiment there were two main factors: presenta-
tion condition (sequential versus simultaneous) and
directed attention condition (unattended versus at-
tended). The average IMRI signals with attention in-
creased more strongly for simultaneously presented
stimuli than the corresponding signals for sequen-
tially presented stimuli. Thus, the suppressive inter-
actions were partially cancelled out by attention.



2.3 Psychophysical experiments: vi-

sual search

We now concentrate on the macroscopic level of
psychophysics. Evidence for different temporal be-
haviours of attention in visual processing come from
psychophysical experiments using visual search tasks
where subjects examine a display containing ran-
domly positioned items in order to detect an a priori
defined target. All other items in the display which
are different from the target serve the role as dis-
tractors. The relevant variable tipically measured
is search time as a function of the number of items
in the display. Much work has been based on two
kinds of search paradigm: feature search, and con-
junction search. In a feature search task the target
differs from the distractors in one single feature, e.g.
only colour. In a conjunction search task the target
is defined by a conjunction of features and each dis-
tractor shares at least one of those features with the
target. Conjunction search experiments show that
search time increases linearly with the number of
items in the display, implying a serial process. On
the other hand, search times in a feature search can
be independent of the number of items in the display.

Quinlan and Humphreys [10] analyzed feature
search and three different kinds of conjunction
search, namely: standard conjunction search and two
kinds of triple conjunction with the target differing
from all distractors in one or two features respec-
tively. Let us define the different kinds of search
tasks by using a pair of numbers m and n, where m is
the number of distinguishing feature dimensions be-
tween target and distractors, and n is the number of
features by which each distractor group differs from
the target. Using this terminology, feature search
corresponds to a 1,1-search; a standard conjunction
search corresponds to a 2,1-search; a triple conjunc-
tion search can be a 3,1 or a 3,2-search depending of
whether the target difffers from all distractor groups
by one or two features respectively.

Quinlan and Humphreys [10] showed that in fea-
ture search (1,1), the target is detected in parallel
across the visual field. They also show that the re-
action time in both standard conjunction search and
triple conjunction search conditions is a linear func-
tion of the display size. The slope of the function
for the triple conjunction search task can be steeper
or relatively flat, depending upon whether the tar-
get differs from the distractors in one (3,1) or two
features (3,2), respectively.

3 The neurodynamical model

The overall systemic representation of the model is
shown in Fig.1. The system is essentially composed
of six modules (V1, V2-V4, IT, PP, v46, d46), struc-
tured such that they resemble the two known main
visual paths of the mammalian visual cortex: the
what and where paths [11, 12, 13]. These six mod-
ules represent the minimum number of components
to be taken into account within this complex sys-
tem in order to describe the desired visual attention
mechanism.

Information from the retino-geniculo-striate
pathway enters the visual cortex through areas V1-
V2 in the occipital lobe and proceeds into two
processing streams. The occipital-temporal stream
(what pathway) leads ventrally through V4 and IT
(inferotemporal cortex) and is mainly concerned
with object recognition, independently of position
and scaling. The occipito-parietal stream (where
pathway) leads dorsally into PP (posterior parietal)
and is concerned with the location of objects and
the spatial relationships between objects. The model
considers that feature attention biases intermodular
competition between V4 and IT, whereas spatial at-
tention biases intermodular competition between V1,
V4 and PP.

The ventral stream consists of four modules: V1,
V2-V4, IT, and a module v46 corresponding to the
ventral area 46 of the prefrontal cortex, which main-
tains the short-term memory of the recognized ob-
ject or generates the target object in a visual search
task. The module V1 is concerned with the extrac-
tion of simple features (for example bars at different
locations, orientations and size). It consists of pools
of neurons with Gabor receptive fields tuned at dif-
ferent positions in the visual field, orientations and
spatial frequency resolutions. The V1 module con-
tains P x P hypercolumns that cover the N x N
pixel scene. Each hypercolumn contains L orienta-
tion columns of complex cells with K octave levels
corresponding to different spatial frequencies. This
V1 module inputs spatial and feature information up
to the dorsal and ventral streams. Also, there is one
inhibitory pool interacting with the complex cells of
all orientations at each scale. The inhibitory pool
integrates information from all the excitatory pools
within the module and feedbacks unspecific inhibi-
tion uniformly to each of the excitatory pools. It me-
diates normalizing lateral inhibition or competitive
interactions among the excitatory cell pools within
the module.

The module IT is concerned with the recognition
of objects and consists of pools of neurons which are
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Figure 1: Architecture of the neurodynamical ap-
proach. The system is essentially composed of six
modules structured such that they resemble the two
known main visual paths of the visual cortex.

sensitive to the presence of a specific object in the
visual field. It contains C' pools, as the network is
trained to search for or recognize C particular ob-
jects. The V2-V4 module serves primarily to pool
and channel the responses of V1 neurons to IT to
achieve a limited degree of translation invariance. It
also mediates a certain degree of localized competi-
tive interaction between different targets. A lattice
is used to represent the V2-V4 module. Each node
in this lattice has L x K assemblies as in a hypercol-
umn in V1. Each cell assembly receives convergent
inputs from the cell assemblies of the same tuning
from an M x M hypercolumn neighborhood in V1.
The feedforward connections from V1 to V2-V4 are
modeled with convergent Gaussian weight function,
with symmetric recurrent connection.

The dorsal stream consists of three modules: V1,
PP and d46. The module PP consists of pools cod-
ing the position of the stimuli. It is responsible for
mediating spatial attention modulation and for up-
dating the spatial position of the attended object. A
lattice of N x N nodes represents the topographical
organization of the module PP. Each node on the lat-
tice corresponds to the spatial position of each pixel
in the input image. The module d46 corresponds to
the dorsal area 46 of the prefrontal cortex that main-
tains the short term spatial memory or generates the

attentional bias for spatial location.

The prefrontal areas 46 (modules v46 and d46)
are not explicitly modeled. Feedback connections
between these areas provide the external top-down
bias that specifies the task. The feedback connection
from area v46 to the IT module specifies the target
object in a visual search task. The feedback connec-
tion from area d46 to the PP module generates the
bias to a targeted spatial location.

The system operates in two different modes: the
learning mode and the recognition mode. During the
learning mode, the synaptic connections between V4
and IT are trained by means of Hebbian learning dur-
ing several presentations of a specific object. During
the recognition mode there are two possibilities of
running the system. First, an object can be localised
in a scene (visual search) by biasing the system with
an external top-down component at the I'T module
which drives the competition in favour of the pool
associated with the specific object to be searched.
Then, the intermodular attentional modulation V1-
V4-IT will enhance the activity of the pools in V4
and V1 associated with the features of the specific
object to be searched. Finally, the intermodular at-
tentional modulation V4-PP and V1-PP will drive
the competition in favour of the pool localising the
specific object. Second, an object can be identified
(object recognition) at a specific spatial location by
biasing the system with an external top-down com-
ponent at the PP module. This drives the competi-
tion in favour of the pool associated with the specific
location such that the intermodular attentional mod-
ulation V4-PP and V1-PP will favour the pools in V1
and V4 associated with the features of the object at
that location. Intermodular attentional modulation
V1-V4-IT will favour the pool that recognized the
object at that location.

Each pool of neurons will be described within the
mean field approximation [14, 15, 16, 17] which con-
sists of replacing the temporal averaged discharge
rate of a cell with an equivalent activity of a neural
population (ensemble average). The mathematical
formulation of our model is given in the following
section.

3.1 Mathematical formulation of the
model

We consider a pixelized grey-scaled image given by
a N x N matrix I';;?. The subindex ij denotes
the spatial position of the pixel. Each pixel value
is given a grey value coded between 0 (black) and
255 (white). The first step in the preprocessing con-
sists in removing the DC component of the image



which is probably done in the lateral geniculate nu-
cleus (LGN) of the thalamus. We denote this LGN
representation by the n x n matrix I';;. In our ex-
periments the images were pixelized in a 66x66 ma-
trix (N = 66) for the single cell recordings simula-
tions and in a 64x64 matrix for the fMRI simulations.
Feedforward connections to a layer in V1 perform the
extraction of simple features. Simple cells in the pri-
mary visual cortex are modeled by 2D-Gabor func-
tions. The Gabor receptive fields have five degrees of
freedom (2D-location of the receptive field’s center,
size of the receptive field, orientation and symmetry)
and are given by the product of an elliptical Gaussian
and a complex plane wave.

The neurons in the pools in V1 have receptive
fields performing a Gabor wavelet transform. Let us
denote by I ;;ﬁ the sensorial input activity to a pool
in V1 which is sensitive to a determined spatial fre-
quency given at octave k, to a preferred orientation
defined by the rotation index [ and to stimuli at the
center location specified by the indices pg. The sen-
sorial input activity to a pool in V1 is therefore de-
fined by the module of the convolution between the
corresponding receptive fields and the image. The
large receptive fields of V2 and V4 can be approxi-
mately taken into account by including in V1 pools
with receptive fields corresponding to several octaves
of the 2D-Gabor wavelet transform (i.e. not only the
typical narrow receptive fields of V1 but also larger
receptive fields are included in V1). Therefore, for
the fMRI simulations we compact the V1 and V2-
V4 modules in just one module, namely V1. The re-
duced system connects all cell assemblies in V1 with
all cell assemblies in IT. However, in order to simu-
late Reynolds et al.’ experiment and to be able to
compare with their data we include a V2 pool that
is directly connected to V1.

Let us now define the neurodynamical equations
that regulate the evolution of the whole system. The
activity level of the input current in the V1 module
is given by

.9
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where the attentional biasing due to the intermodu-
lar where connections with the pools in the PP mod-
IV1-PP is given by

ule, I,
IVl PP ZWPQUF
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and the coefficients Wp,;; are evaluated as
qu,’j = Klep : exp[—dist2/252] (3)

with Ky1pp being the coupling constant between
both modules, S = 2 and dist represents the distance
from spatial localization (4,j) to the position of the
receptive field (p, q).

Also, in eq. 1 I is a diffuse spontaneous back-
ground input, v is the Gaussian noise and IV}~ IT
represents the attentional biasing due to the inter-
modular what connections with the pools in the tem-
poral module IT and is defined by

Vi IT
Ikpql

c=C
= Z wckpqu(IcIT(t)) (4)
c=1
where wcrpq is the connection strength between
pools V1 and IT, corresponding to the coding of a
specific object category c¢. We assume that the IT
module has C' pools corresponding to different ob-
ject categories.

Excitatory cell pools in each module are en-
gaged in competition, mediated by an inhibitory pool
which receives excitatory input from all the excita-
tory pools and provides uniform inhibitory feedback
to each of the excitatory pools. The current activ-

ity of the inhibitory pools I, ,Z LI obey the following
equations
0 vir Vi, 1 Vi, I
6tI ® = - Z F(Lpq (t
p7q7
— dF(LM (1) (5)

Similarly, the current activity of the excitatory
pools in the PP module are given by
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where Iz.};P A is an external attentional spatial-
specific top-down bias, the intermodular attentional
biasing IZ.I;P ~V1 through the connections with the
pools in the module V1 is
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and the activity current of the common PP in-
hibitory pool evolves according to
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The dynamics of the inferotemporal module IT is
given by

S T = 7))+ aF (T ()
bE(I™ () + IV ()
+ II'ME 44w (9)

where I'T"F denotes an external attentional spatial-
specific top-down bias and the intermodular atten-
tional biasing between IT and V1 pools is

0 = 3 weapm PO
k.p.q,l

(10)

where the weights wcgpq are trained by Hebbian
learning.

Finally, the activity current of the common PP
inhibitory pool evolves according to

0

I =

1) + YD F(IIT(R)

— AP (1)) (11)

4 The numerical simulations

4.1 Simulation of the single-cell ex-

periments

In this section we present the simulations [19, 20]
corresponding to the experiments by Reynolds et al.
on single cell recording in V2 neurons in monkeys.
We study the dynamical behavior of the cortical ar-
chitecture presented in the previous section by nu-
merically solving the system of coupled differential
equations in a computer simulation. We introduce
for this experiment a module of V2 neurons. The
input system processed an image of 66 x 66 pixels
(N=66). The V1 hypercolumns covered the entire
image uniformly. They were distributed in 33 x 33
locations (P=33) and each hypercolumn was sensi-
tive to two spatial frequencies and to eight differ-
ent orientations (K=2 and L=8). The V2 module
has 2 x 8 pools receiving convergent input from the
pools of the same tuning from a 10 x 10 (i.e., M=10)
hypercolumn neighborhood in V1. The feedforward
connection from V1 to V2 are modeled with a conver-
gent Gaussian weight function, having a symmetric
recurrent connection. We analyzed the firing activity
of a single pool in the V2 module which was highly
sensitive to a vertical bar presented in its receptive
field (effective stimulus) and poorly sensitive to a 75
degrees oriented bar presented in its receptive field
(ineffective stimulus). The size of the bars were 2

x 4 pixels. Following the experimental setup of the
work by Reynolds et al., we calculate the evolution
of the firing activity of a V2 pool under four differ-
ent conditions: 1) single reference stimulus within
the receptive field; 2) single probe stimulus within
the receptive field; 3) reference and probe stimulus
within the receptive field without attention; 4) ref-
erence and probe stimuli within the receptive field
and attention directed to the spatial location of the
reference stimulus. In the simulations, the attention
was directed to the reference location by setting the
top-down attentional bias IiI; PAin PP equal to 0.07
if 4 and j correspond to the location of the reference
stimulus and to zero otherwise. In the unattended
condition, the external top-down bias was set equal
to zero everywhere. Comparing with the experimen-
tal results, the same qualitative behavior is observed
for all experimental conditions analyzed. The com-
petitive interactions in the absence of attention are
due to the intramodular competitive dynamics at the
level of V1 (i.e. the suppressive and excitatory effects
of the probe). The modulatory biasing corrections in
the attended condition are caused by the intermod-
ular interactions between V1 and PP pools, and PP
pools and prefrontal top-down modulation.

4.2 Simulations of the fMRI data

The dynamical evolution of activity at the cortical
area level, as evidenced in the behaviour of fMRI sig-
nals in experiments with humans, can be simulated
in the framework of the present model by integrating
the pool activity in a given area over space and time.
The integration over space yields an average activity
of the considered brain area at a given time. With re-
spect to the integration over time, it is performed in
order to simulate the temporal resolution of fMRI ex-
periments. In this section we simulate fMRI signals
from V4 under the experimental conditions defined
by Kastner et al. [9]. We use the same parameters as
in the last section but the V1 hypercolumns include
now three levels of spatial resolution (K = 3). Let us
remark that for this particular case, the IT module
as well as the v46 area are not explicitely needed for
the computational simulations.

In order to simulate the data by Kastner et al., we
also use four complex images similar to the ones these
authors used in their work. These images were pre-
sented as input images in four nearby locations in the
upper right quadrant. The neurodynamics is solved
through an interactive process where we choose 200
iterations to represent 1s (that corresponds to the
time resolution of the fMRI measurements).

Stimuli were shown in the two above mentioned
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Figure 2: (a) Experimental design of Kastner et a
[9]. (b) Computer simulations of fMRI signals i
visual cortex. Grey shade areas indicate the expec
tation period, striped areas the attended presenta
tions and blocks without shading correspond to unat
tended condition.

conditions: sequential and simultaneous (see Fig
2a). In the SEQ condition, stimuli were presente
separately in one of the four locations for 250 ms. I
the SIM condition, the four stimuli appeared simul
taneously for 250 ms and with equal blank intervals
between each other. The order of the stimuli and
location was randomized. Two attentional condi-
tions were simulated: an unattended condition, dur-
ing which no external top-down bias from prefrontal
areas was present (i.e. Iz-?P’A is zero everywhere)
and an attended condition that was defined 10s be-
fore the onset of visual presentations (expectation
period EXP) and continued during the subsequent
10s block.

The attended condition was implemented by
setting Ii};P’A equal to 0.07 for the locations as-
sociated with the lowest left stimulus and zero
elsewhere. Fig.2b shows the results of the com-
putational simulations [20] for a sequential simu-
lation block: BLK-EXP-SEQ(attended)-BLK-SIM-
BLK-EXP-SIM (attended). As in the experiments of
Kastner et al. [9], these simulations show that the
fMRI signals were smaller in magnitude during the
SIM than during the SEQ presentations in the unat-
tended conditions because of the mutual suppression
induced by competitively interacting stimuli. On the
other hand, the average fMRI signals with attention
increased more strongly for simultaneously presented
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nents (shape, colour, etc.).

stimuli than the corresponding ones for sequentially
presented stimuli. Thus, the suppressive interactions
were partially cancelled out by attention. Finally,
during the expectation period activity increased in
the absence of visual presentations and further in-
creased after the onset of visual stimuli. The the-
oretical data describe quite well the qualitative be-
haviour of the experiments.

4.3 Simulation of visual search tasks

Deco and Zihl [13] and Rolls and Deco [18] extended
the neurodynamical model to account for the differ-
ent slopes observed experimentally in complex con-
junction visual search tasks. Figure 3 shows the over-
all architecture of the extended model. The input
retina is given as a matrix of visual items. The lo-
cation of each item on the retina is specified by two
indices (ij), describing the position in row ¢ and col-
umn j. The dimension of this matrix is SxS, i.e. the
number of items in the display is S2. Information is
processed across the different spatial locations in par-
allel. The authors assume that selective attention re-
sults from independent competition mechanisms op-
erating within each feature dimension. Each visual
item can be defined by M features. FEach feature
m can adopt N(m) values, for example the feature
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colour can have the values black or white (in this case
N (colour) = 2). For each feature map m, there are
N (m) layers of neurons characterizing the presence
of each feature value. A cell assembly consisting of
a population of fully connected excitatory integrate-
and-fire spiking neurons is allocated to every loca-
tion in each layer, in order to encode the presence
of a specific feature value (e.g. colour white) at the
corresponding position. The feature maps are topo-
graphically ordered; i.e. the receptive fields of the
neurons belonging to cell assembly ij in one of these
maps are limitated to the location ¢j in the retinal
input. It is also assumed that the cell assemblies
in layers corresponding to one feature dimension are
mutually inhibitory. The posterior parietal module
is bidirectionally coupled with the different feature
maps and serves to bind the different feature dimen-
sions at each item location, in order to implement
local conjunction detectors. The inferotemporal con-
nections provide top-down information, consisting of
the feature values for each feature dimension of the
target item. This information is fed into the system
by including an extra excitatory input to the corre-
sponding feature layer. For example, if the target is
defined as small, vertical and black, then all excita-
tory pools at each location in the layer coding small
in the feature map dimension size, in the layer cod-
ing vertical in the feature map orientation and in the
layer coding black in the feature map colour, receive
an extra excitatory input from the IT module.

In Fig. 4, the computational results obtained by
Deco and Zihl [13] for 1,1; 2,1; 3,1 and 3,2-searches
are presented. The items are defined by three fea-
ture dimensions (M = 3, e.g. size, orientation and

colour), each having two values (N (m) = 2 for m =
1,2,3, e.g. size: big/small, orientation: horizon-
tal/vertical, colour: white/black). For each display
size, the experiment is repeated 100 times, each time
with different randomly generated targets at random
positions and randomly generated distractors. The
mean value T of the 100 simulated search times is
plotted as a function of the display size S. The slopes
for all simulations are consistent with existing exper-
imental results [10]

5 Conclusions

We followed a computational neuroscience approach
in order to study the role of attention in visual per-
ception. The aim of this review was to attempt to
provide a mathematical formulation that unifies mi-
croscopic, mesoscopic and macroscopic mechanisms
involved in the brain functions, allowing the descrip-
tion of the existing experimental data (and the pre-
diction of new results as well) at all neuroscience
levels (psychophysics, functional brain imaging and
single neural cells measurements).

We have focused on the analysis of the micro-
scopic neurodynamical mechanisms that underlie vi-
sual attention. We presented a computational sys-
tem that consists of interconnected populations of
cortical neurons distributed in different brain mod-
ules which in turn can be related to the different
areas of the dorsal and ventral paths of the cortex.
Competitive mechanisms were implemented by con-
necting the pools of a given module with a common
inhibitory pool. In this way, the more pools of the
module are active, the more active will the common
inhibitory pool be and, consequently the pools in
the module will experience more feedback inhibition,
such that only the most excited group of pools will
survive and win the competition. On the other hand,
external top-down bias could shift the competition in
favor of a specific group of pools. Therefore, this ba-
sic computational model implements the biased com-
petition hypothesis. Taking into account the compu-
tational role of individual brain areas and their mu-
tual interactions, the macroscopic phenomenological
behavior arises as the result of the global dynamical
interactions between the different modules.

In summary, computational neuroscience pro-
vides a mathematical framework for studying the
mechanisms involved in brain function, like visual
attentional mechanisms, that we have reviewed in
the present work. The neurodynamical model here
analyzed is based on evidence from functional, neu-
rophysiological and psychological findings. The sim-



ulations obtained with this theoretical model suc-
cessfully reproduce the experimental results of neuro-
physiological and fMRI experiments on spatial atten-
tion, as well as studies on serial and parallel search.
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