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Abstract

In this paper, we present a new mechanism for the rep-
resentation and recognition of sequential action. The
underlying premise is that many activities can be repre-
sented by a partially ordered set of intervals each corre-
sponding to a primitive or elemental action. Each inter-
val typically has associated parent intervals whose states
determine the likelihood that the child interval will be
triggered. Furthermore, each interval typically has per-
ceptual evidence that is indicative of the elemental action
taking place. We present a temporal sequencing algo-
rithm that attempts to interpret an multi-dimensional ob-
servation sequence of visual evidence as a temporal prop-
agation through a network of these intervals. We develop,
implement, and test a particular mechanism for embody-
ing this representation within the domain of a small num-
ber of indoor human activities.
Keywords: Activity recognition, Bayesian network, fi-
nite state ma- chine, stochastic state propagation

1. Introduction
Rich vision interfaces react to more than particular in-
stantaneous acts by the user. Rather, the system needs to
be sensitive to more temporally extended patterns of ac-
tivity. The simplest characterization of these systems is
that they need to be aware of what the user is doing in
terms of some set of understood activities.

There has been extensive work recently in develop-
ing perception systems that respond to the action of a
user. A few timely reviews can be found in [2, 9]. Most
of these approaches consider activity as a temporally or-
der sequence ofinstantaneous events. The underlying
representations are typically finite state machines (either
deterministic[4] or probabilistic[14]) or some extension
such as context-free grammars [5, 10]. The detected
events cause transitions in the graph and a successful

transition through the entire graph implies the recogni-
tion of the represented activity.

In this paper we take a somewhat different approach.
First, we presume that elemental or primitiveintervals
make up the basic units that are sequenced to define
higher level activities. Second, we assume that there is a
temporal/logical relationship that can be loosely thought
of as a partially ordered set. An example might be that
to make a phone call (on a phone with a separate hand-
set from dialing base) the subject needs to pick up the
phone, then accomplish both elemental actions of dialing
and putting the phone to his ear, and then speaking into
the phone. The dialing and lifting to the ear both happen
after picking up the handset, and both must occur pri-
marily before speaking, but there is no hard relationship
between them. And third, we associate some form of per-
ceptual evidence with each of the underlying intervals.

In this paper we devise a representational mechanism
and interpretation method that explicitly encodes these
three aspects. We begin by describing the overall frame-
work apropagation networkand how it differs from typ-
ical graphical model representations in terms of both in-
stantaneous evidence and temporal evolution. Next we
will present a approximate algorithm — local maximal
search algorithm (LMSA) — that seeks to maximize the
overall evaluation based on positive evidence that an in-
terval will start or continue. Finally we conduct some
experiments using motion capture data as input for the
recognition of some simple office-relevant activities such
as making a phone call or reading a book.

2. Representing sequential activity
As mentioned, there has been extensive work in repre-
senting and recognizing activity. Here we only mention
those efforts that contribute to the current proposal. We
then separate out the elements of perceptual evidence
from those of historical (really temporally contextual)



support.

2.1. Previous work

Starting with Yamato [16] and continuing predominantly
in the gesture recognition community (e.g. [14]), re-
searchers have turned to hidden Markov models. The
appeal is obvious: HMMs provide solutions to the rep-
resentation, recognition andlearningproblems. Given a
set of sequences whose observation are in some feature
space, the various HMM algorithms learn discrete states
in that space and probabilistic transitions between them,
thus constructing a stochastic finite state machine.

The difficulties with this approach are several but
we mention only two. First, one problem is the ’H’ in
the sense that the underlying states are “hidden”. For
much of activity recognition, the goal is to be able to de-
fine higher level activities in terms of understood lower
level primitives, making the “hidden” aspect unappeal-
ing. Second, it is not uncommon to have partially ordered
primitives with parallel tracks, each of which needs to be
completed before getting to some end goal. This logi-
calsequencing constraint is not easily represented by an
HMM or FSM.

The relevance of HMMs to the discussion here is
that a valuable conceptualization of an HMM is as a
conditional-dependence graphical model ( Bayesian Net)
unrolled out in time. At each time stept there is a state
nodeqt that has a probability that it is in each possible
HMM state. As a first-order Markovian graphical model,
the state probabilities are conditioned upon only the state
assignments at the immediately preceding time step. In
addition, there is an evidence observation that depends
only upon the current state. Once an entire observation
sequence is available, the forward-backward or Viterbi
algorithm can be evaluated to determine the likelihood of
each state at each time, and also the likelihood that the
given HMM would generate the observed sequence. This
last aspect is what gives HMMs such appeal for activity
classification.

In the HMM graphical model at each point in time
there is a prior density on state distribution determined by
the previous time step, and that the likelihood of the cur-
rent measurement depends only on the current state. This
structure is exploited by Dynamic Bayesian nets (DBN)
[8] where at each time step the posterior probability at
timet becomes the prior probability for timet+1. DBNs
have been used to assist tracking and also for decompos-
ing sequences into their independent processes[7].

A major difficulty with finite state machine represen-
tation such as those described above or those of [4] is
that the system can only be in one state at a time and
that transitions across states are instantaneous events. In
reality, activities are often comprised of partially order,

sometimes parallel finite duration intervals. Very few ap-
proaches to representing action this way have appeared
in the recognition literature. One exception is the work
of Pinhanez [11] that employs a simplified version of
Allen’s temporal algebra [1] to reason about temporal
constraints. Within that system one can naturally repre-
sent, for example, that two intervals may occur in parallel
(or in arbitrary order) but that both must complete before
a third is started.

2.2. P-nets: partial sequencing of compo-
nents

Consider the simple example of making a phone call (on
a phone with a separate handset from dial mechanism). A
description in terms of primitive intervals might be some-
thing like “First, [A] pick up the receiver. Next [B] put
the phone to your head AND [C] dial the number (order
unimportant, can be parallel). Finally, [D] start speak-
ing.” From even this trivial example we see a variety of
constraints on any reasonable representation of activity
designed for visual recognition:

1. Sequential streams - there is a natural partial order-
ing of components

2. Multiple, parallel streams - a variety of intervals
may occur in parallel

3. Logical constraints

4. Duration of the elements - the primitive are not
events but intervals of duration

5. Non-adjacency - sequenced intervals may not meet
but only be ordered

6. Uncertainty of underlying vision component - there
is always noise in feature extraction and assessment

To address these issues we propose a three tiered rep-
resentation of activity, the top level of which refers to as
a propagation netor p-net. (A toy example is shown in
Figure 1.) The nodes of a p-net are intended to be prim-
itive intervals — we will consider what it means to be
primitive shortly. Loosely we can say that an interval can
be said to have some probability of being active at timet
having started some durationd beforet.

The arrows in the p-net are intended to be conditional
triggering probabilities. Just as in a DB, the arrows into a
node represent a conditional probability on the state of
the node at timet + 1 given the parents state at time
t. These conditional probabilities encode the logical re-
quirements, such as that all parents must be active before
a child can become active, or that one and only one of
possible parents be active for the child to be triggered.
In the implementation described here, these conditional
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Figure 1: Overall architecture. Propagation net is responsible
for representing sequencing and logical constraints.

probabilities will specify how likely the child will start
at different time after the parent(s) end(s). With multi-
ple parents this probability function can enforce relative
timing requirements between the parents should such re-
quirements exist.

An aspect of a p-net that is different than a standard
DBN or HMM is that there is a duration model. Namely,
for each node there is a duration probability that it will
remain active fromt, d to t+1, d+1, and that probability
is a function of thed associated with the state at time
t. Duration-model HMMs are possible at the penalty of
increase computational complexity [13].

Each node in a p-net has a corresponding evidence
component. The evidence component here is a simple
Bayes net that integrates instantaneous information from
low-level vision detectors. The repository of detectors
is the lowest level of the representation. Though in the
development given here the evidence components are in-
stantaneous, they could span a duration such as a back-
ward looking HMM that detects primitive actions [5].

There are some conceptually defined criteria for se-
lecting the detector:

• repetition of the module with some variable param-
eters

• atomic or self contained vision method

Targeting daily indoor activity, based on such criterion,
the following detectors are justified: the motion of the
hand, the contact of 2 objects, the orientation of object.

Those detectors will provide the probability that the cor-
responding event is detected in the stream up to the cur-
rent frame. The output serves are fed into the leaf nodes
in the Bayesian network.

Bayesian networks excel in combining inaccurate in-
formation and making systematic predictions. We choose
them to combine the lower level probability while enforc-
ing the target and object conformity. The definition and
calculation for the Bayesian net is standard [6].

3. Formal model for p-nets
3.1. Definition
Now we provide the precise definition for p-net. We bor-
row some notation from HMMs in terms of the name
of the various elements. p-net is defined asP =
{O, B, C,Φ, S} where:

S is the state set of the nodes. At each time t, for each
node i, there will bedi states. Eachsi(t, d) describes the
hypothesis that node i has been active sincet − d + 1
so that duration isd. Particularly,si(t, 1) is influenced
by the parent nodes state andφ (defined below) while
si(t, d > 1) is controlled bysi(t, d − 1) and self-link C.
A dummy node is associated with all nodes that don’t
have predecessor and another is associated with nodes
that don’t have a successor. They are used to delineate
the starting and ending of the whole sequence.

O = {oi(t)} is the observation of nodeni at timet.
B = {< b+

i , b−i >} is the set of conditional probabil-
ities of observing the perceptual evidence thatniis active
depending upon whether the node really is (b+) or is not
(b−) active. For continuous output detectors each of the
< b+

i , b−i > would have to be a function that can be ap-
plied depending upon the observed output value.

C is the conditional probability that describes the self-
termination link. It is the conditional probability that
givenni has been activated ford time steps,ni will be-
come deactivated in the next time step. We model the du-
ration on each node as a Gaussian distributionG(ei, fi).
Therefore the loopback probability for ni(j) is

ci(d) =
∫ d+1

d

G(ei, fi)/
∫ ∞

d

G(ei, fi)

Φ defines the set of triggering functions that provide
the conditional linking in the node set. For every node
i, there is a triggering functionφi which takes as it’s ar-
gument the state at timet of the parents of nodeni. It
returns a probability that nodeni will trigger at t + 1. As
mentioned, for this implementation, the trigger functions
rely on the termination of the parent intervals. Thus the
probability that a particular node will trigger att + 1 de-
pends upon probability of the parent nodes having been
active sincet− 1− h, and becoming inactive at timet.



In our system, the functionsφi are the probabilistic
equivalents to logical combinations such as Noisy-OR or
Noise-AND [6]. Furthermore, we force the functionsφi

to be windowed gating functions. It enforces a window
on the state history of parent nodes. Only the states which
starts within the past h time steps are influential on the
child’s state.

3.2. Local maximal search algorithm
(LMSA)

At each time step we need to propagate node activity
through the network. We follow the method of DBNs for
each state updating. We first define a prior probability on
the activity state of nodeni at timet using the state of the
node or its parents at timet− 1 as given and do the con-
ditional propagation. Next we observe the dataoi(t) and
combine the prior with the data to get a posterior estimate
on the probability of nodeni being active at timet. We
denote the prior and posterior probabilities forsi(t, d) as
s
(−)
i (t, d) ands

(+)
i (t, d) .

3.2.1 Forward calculation

Because we defined the state termination probabilitiesci

to be only a function of the current duration of the activity
of a node, the predicted state of a currently active node is
only a function of that node:

s
(−)
i (t, d) = s

(+)
i (t−1, d−1)·(1−ci(d−1))whend > 1

The more complex situation arises if a node has not
been triggered yet. Now we need to know the probability
the node will trigger given the state (and history) of its
parents. To estimate that value, we need the triggering
function φi. In the implementation described here, the
φi functions are either a Noisy-OR or Noisy-AND (de-
pending upon the logic of the child). Furthermore, to be
more accurate we need to integrate over all possiblet and
d within h for the parents, but that is computationally too
expensive. Instead, we take simplification by selecting
the maximal value within the windowh and use it as the
parent node state to gets

(−)
i (t, 1):

s
(−)
i (t, 1) = φ({maxt′,d′(s

(+)
j (t′, d′)(1− cj1(d

′))|
for allsj ∈ Parent(si)))

After computing the prior probabilities, we take our
observations and now compute the posteriors

(+)
i (t, d)

according to Bayes rule using thebi and the observations
oi(t).

s
(+)
i (t, d) = b(−)(1− s

(−)
i (t, d)) + b(+)s

(−)
i (t, d)

The interpretation path can be generated by keeping
records in each calculation step and trace backward from
s
(−)
N (t, 1).

3.2.2 Path evaluation

The forward calculation only selects the usual evidence
that will help propagation. If the evidence does not fall in
the final path, it has no effect on contributing to the final
probability. This is not desirable on overall path evalua-
tion. To amend it, we provide an evaluation function on
path.

It is defined as the probability gain to observe the ev-
idence at the predicted evidence probability over nothing
happens. In this way, if evidence is not included in the
path, then the probability to generate it is 0, and the cor-
responding evaluation is also 0. Therefore, only the evi-
dence included in the path may change the overall eval-
uation which is the sum of individual evaluation at each
step.

The evaluation is performed when generating poste-
rior probabilitys

(+)
i (t, d).

Ei(t, d) = oi(t)−|oi(t)−s
(−)
i (t, d)b(+)+(1−s

(−)
i (t, d))b(−)|

E(path) = Σt(Ei(t, d)/N, for corresponding i, d
that falls on path at time t.

3.2.3 Iteration

In the forward calculation, the time constraints between
the sibling nodes are ignored. As different child nodes
may select different parent timeduration state for local
maximal, it may lead to a conflicting interpretation. For
example, child B may want A to terminate att1, while
child C may want A to terminate att2. They both as-
sume they succeed. Then the grandson D will obtain a
conflicting path from B and C.

To unify the different state assumption on parent
node, we choose to iterate on top of the forward calcu-
lation. During each iteration, a candidate path is gener-
ated backwards from the ending nodes. Then we freeze
the node which has no conflicting assumption on itself or
on its ancestors. By freeze we mean that, in the next it-
eration, we restrict the node from generating any states
other than the one within the frozen path. And select one
assumption for the conflicting nodes which has no con-
flicting in its ancestor and push the other assumption in
stack for later iteration. We then go back to do forward
calculation again. Since in each iteration, if there are con-
flicting nodes, at least one conflicting node doesn’t have
a conflicting ancestor as they are partially ordered. That
node can be frozen in the next iteration. So in each step
at least one more node will be frozen so that the iteration
will end as the candidate path is limited.

After generating all candidate local maximal paths,
we can select the path by its evaluation function. The
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Figure 2: Results on “calling” and “reading” networks.

path with maximal evaluation is deemed as the overall
interpretation.

4. Experiments
To test our system, we recorded 2 types of daily activity
by motion capture device. In type 1, “calling”, one walks
in, sit on the chair, make a phone call then walk out; in
type 2, “reading”, one walks in, sit on the chair , read a
few pages of book, then walk out. We took 12 run of each
types. Each type is sampled at 10 frames a sec, about
20 seconds long. The propagation net representations for
type 1 and 2 are presented in Figure 2.

The parameters for p-net are empirically assigned.
The middle level output from Bayesian network is full
of noise, as the lower level detector is too simple and has
many false alarms. But, the temporal constraints of the
p-net cause the mid-level labelling to be much better. An
example comparing theLeftPutbackStart compo-
nent is shown in Figure 3.

Finally, Figure 4 demonstrates the initial results of the
final output by evaluating all the samples on both net-
works. As a comparison, we temporally scrambled the
data to maintain the same low level evidence but in the
wrong order. One can see that the correct interpretation
is always the best, though the margins are not as high
as needed to do a robust detection. One reason for this
is that the two activities are quite similar in motions and
thus in terms of low level descriptions. We are currently
working on refining the networks.

Since LMSA is based on each node’s local maximal,
its speed is polynomial. The total running time for a 200
frame sequence is less than 5 seconds on Pentium4 2Ghz.
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labelling forLeftPutbackBegin .

The actual time depends on how many conflicting nodes
may exist.

5. Conclusion
The PNet and its LMSA algorithm provide a natural and
efficient way to integrate temporal and logic relationship
in daily activity. Experiments show that they are robust
in insertion and deletion error. And the recovery ability
is not at the exponential cost.

Our architecture not only provides an activity recog-
nition method, but also a stream labelling method. PNet
provides a segmentation on stream and tell what is hap-
pening at each time frame. This information is very use-
ful in video stream search. For example, in security mon-
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Figure 4: Results on “reading” and “calling” networks.

itoring system, critical section of video can be extracted
for verification purpose.

There is a major shortcoming on LMSA as it will only
produce a result after it see the whole sequence. This re-
stricted the usage from real time control. We are working
on improving it.
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