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Abstract
Two difficult issues in optical flow are motion discontinu-
ities and large interframe motion. We present an algorithm
that addresses both issues by first performing feature
tracking and motion segmentation and then warping one of
the images to reduce the interframe motion and avoid the
motion discontinuities. The algorithm consists of three
major phases: 1) feature selection, 2) feature tracking and
segmentation 3) optical flow. We used the Lucas and
Kanade algorithm to compute the flow. The experiments
on real images as well as synthetic images with ground
truth showed that this method is very accurate.
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1. Introduction
Motion segmentation is defined as the decomposition of

an image sequence into coherently moving objects. Being
able to do segmentation would greatly simplify the solu-
tion of problems like optical flow because we would then
be able to work on regions that do not contain discontinu-
ities.

The computation of optical flow is ill-posed due to the
aperture problem [9]. The most common solution for aper-
ture problem assumes the flow is smooth [10, 17] but the
smoothness assumption is violated at motion boundaries of
moving objects. If we could segment the image, then we
would be able to avoid the motion boundaries. A statistical
technique called Expectation Maximization (EM) has been
applied successfully to cluster pixels into segments and
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thus detect boundaries [5]. These motion segmentation
techniques assume either that the flow is precomputed usu-
ally by dividing the image into regions, computing flow in
each region and then merging the regions with similar flow
[19, 6, 21] or that the interframe motion is small enough to
use the optical flow equation directly [5]. The goodness of
the segments produced is limited by the accuracy of the
initial optical flow computation step. The main drawback
of EM algorithms is that they require the number of seg-
ments as input. Although there are techniques that can help
estimating the number of clusters (AIC, BIC etc) [14],
what seems to work well in practice is to include an extra
cluster for all the outliers and work on small areas where
the number of segments can be assumed fixed [13].

Another approach to motion segmentation is to identify
line or corner features in an image frame and attempt to
cluster feature points into regions by following the trajec-
tories of the feature points over time. This can be done by
either using active contours [18] or SVD decomposition of
the motion measurement matrix into shape and motion
matrices which can then be used to segment the image by
rearranging the rows and columns of the matrices [8, 11,
15]. The approach we favour in this paper is to track the
object and build up a model of the object over time [13, 12,
7, 22].

2. Overview of the Algorithm
The basic steps of the algorithm are as follows:

(1) Select a feature point.

(2) Track the feature and segment assuming various
models for flow.

(3) Compute optical flow on the segment.



(4) Repeat the above procedure to obtain several seg-
ments.

If during tracking and segmentation the feature point
proves inappropriate we discard it. The options after that
are either to continue with fewer points or select another
point in its place. The tracking of a feature point might fail
for several reasons such as the point falls outside the
image, the segment it detects does not include the feature
point itself (usually because the feature is in an area that
moves erratically) or the seed region centered on the fea-
ture point overlaps very little with the segment (usually
due to eminent occlusion).

2.1. Feature Selection
In this step, we extract potential features for tracking by

identifying corners in an image frame. In most literature,
the term "corner" means features that can be tracked reli-
ably from frame to frame and not only points of maximal
curvature. Unfortunately many points that have rich
enough texture to be corners are not suitable because they
straddle a motion boundary.

We detect corners in an image frame by the corner
detection algorithm proposed by Tomasi and Kanade [20]
with some speed-up modifications made by Benedetti and
Perona [3]. The corner detection algorithm finds feature
points that have good localization in all directions. Tomasi
and Kanade argue that these are pixels whose smallest
eigenvalue of the matrix M [17] is bigger than a threshold
λ t where

M =




E xx

E xy

E xy

E yy





,

E xx = ∫ I2
x , E xy = ∫ I x I y, E yy = ∫ I2

y over a small region

and I x , I y are the spatial derivatives of the image.
Benedetti and Perona speed up the method by using some
properties of the characteristic polynomial of the above
matrix. Among the points that exceed the threshold, we
select N strongest (their smallest eigenvalues are largest)
and randomly pick one of them. This will be the center of
the small seed region (10 × 10 pixels in our experiments)
used for tracking.

Once a seed region is instantiated from a randomly
selected corner feature, we run our tracking and segmenta-
tion algorithm to segment out a region whose pixels move
in a way consistent with the seed region. We classify a
corner as good feature for tracking in subsequent frames if

(1) The segment output from motion segmenta-
tion/tracking step around the seed region overlaps
significantly with the seed region itself. In our
experiments, we set the overlap threshold to be

75%.

(2) The segment is not very small. We discard seg-
ments that are less than 1% of the area of the
image.

(3) The segment does not overlap significantly with
segments found so far. We discard segments that
overlap more than 90% with the existing segments.

When a good feature and its associated segment is found,
we keep track of all the corner features that are within the
segment. For subsequent frames, if the tracked feature gen-
erates a segment that does not satisfy all of the above crite-
ria as a good feature for tracking, we generate seed regions
around other corner features inside the segment in an
attempt to continue the tracking/segmentation of the
region. In this way, we can still track the motion of a seg-
ment if some of its corner features become occluded dur-
ing its motion trajectory.

2.2. Tracking and Segmentation.
Our motion segmentation and tracking algorithm [22]

iterates between tracking and segmentation with more
elaborate models of flow. Giv en a seed region R and a pair
of successive image frames ImN−1, ImN , we find the inte-
ger displacement →uRi

that yields the minimal Sum of
Squared Differences (SSD) between the two frames using
straight search

→uRi
=

→u in →umax

min 
 →x in R

Σ (ImN [ →x] − ImN−1[ →x + →u])2


where →umax is the maximum interframe motion in pixels.

We compute the subpixel flow →uRs
of the seed region R

by first shifting ImN−1 with the integer flow →uRi
and then

finding the subpixel displacement
→

adj that yields the mini-
mum SSD

→uRs
=

→
adj in →umax

min (
→x in R
Σ (ImN−1[ →x] − ImN [ →x + →uRi

+
→

adj]))2

We apply subpixel shifts
→

adj = (adjU , adjV ) in 9 direc-
tions, namely NW, N, NE, W, E, SW, S, SE, (0, 0) and
compute their SSDs. For example, in the NW direction,
adjU = − subpixel, adjV = − subpixel. After that, we shift
ImN−1 by the subpixel flow that yields the minimal SSD
using cubic interpolation. The above procedure is repeated
for successively smaller amount of subpixel shifts. We
found empirically the best sequence of values for subpixel
is 0. 75, 0. 752, 0. 753 . . .. Many other algorithms can do at
least as good a job but this one gives us a bound on sub-
pixel accuracy.

The third tracking model assumes affine flow
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We compute the six affine motion parameters by minimiz-
ing the SSDs for all pixels belonging to the region
(N−1) Itrack that is the bitwise AND between the enlarged
seed region and the segment from the previous step. In this
way, we hav e a larger area to compute the affine flow but
we exclude pixels that are not part of the segment in previ-
ous frames to avoid inclusion of motion discontinuities.
For any successive pair of image frames ImN−1, ImN ,

SSD =
all x,y
Σ (N−1) Itrack(x, y) ⋅ [Im(u,v)

N−1(x, y) − ImN (x, y)]2

where (u, v) is the total flow computed in the previous
steps and Im(u,v)

N−1 is the image ImN−1 aligned by the total
flow (u, v). Using a differential approach, as in [10],
ImN−1 can be expressed in terms of ImN and its x, y
derivatives

Im(u,v)
N−1(x, y) ≈ ImN−1(x, y) + ImN−1,x(x, y) ⋅ u +

ImN−1,y(x, y) ⋅ v

Using this expression for ImN−1 and Eq. (2.1), the SSD can
be expressed as follows:

(2.2)
SSD =

all x,y
Σ (N−1) Itrack[∆ ImN (x, y)

+ ImN−1,x(x, y) u0 + ImN−1,x(x, y) x ux + ImN−1,x(x, y) y uy

+ ImN−1,y(x, y) v0 + ImN−1,y(x, y) x vx + ImN−1,y(x, y) y vy]2

and

∆ ImN (x, y) = ImN−1[x, y] − ImN [x, y]

We apply standard least squares to solve for the six affine
parameters by deriving and solving the normal equation
from Eq. (2.2).

After computing the motion parameters of the seed
region, we segment out a region whose pixels are moving
in a way consistent with the computed motion parameters
by pixelwise thresholding. We warp the previous image
ImN−1 by the computed flow (u, v) thereby aligning ImN−1

with the current image ImN . Pixels moving consistently
with the computed motion model of the seed region have
small Sum of Squared Differences. The problem is that
many pixels that do not have the desired motion might
have small squared difference by coincidence and as a
result the segmentation would be noisy. We solve this by
adding the squared differences between the current image
and all the previous images

(2.3)
SSD =

N−1

i=1
Σ (ImN −(N ) Imi)

2

N − 1

where ImN is the current, or N th, image and (N ) Imi is the
ith image aligned with the N th image. After expansion and
simplification, this gives a much simpler expression

(2.4)= Im2
N −2 (N ) µ̂1 ImN +(N ) µ̂2 = tstat

where µ̂1 and µ̂2 are the first and second moments of the
images and the left superscript (N ) means aligned with the
current image. We update the first and second moments by
an expression that make the history components of these
moments decay exponentially. The constant α is a decimal
number between 0 and 1 that arbitrates the relative impor-
tance between current and history components:

(N ) µ̂1 = α ⋅ (N ) µ̂ t
1 + (1 − α ) ⋅ ImN

(N ) µ̂ t
1 = warp (N−1) µ̂1 by (u, v)

Due to the presence of noise, the statistics tstat would be
non-zero even for perfectly registered image frames. We
attribute the noise to two sources: 1) Camera noise 2)
Motion noise. Camera noise models the white noise gener-
ated by a camera and can be modeled by a Gaussian distri-
bution of zero mean and variance equal to σ 2

c . In all our
experiments σ 2

c = 1. Motion noise represents the noise due
to the error in motion computation. From the optical flow
equation:

ImN−1,x ⋅∆u + ImN−1,y ⋅∆v + ImN−1,t = 0

where ∆u and ∆v are the errors in the flow, ImN−1,x ,
ImN−1,y are the x, y derivatives of ImN−1 and
ImN−1,t = ImN−1 − ImN . We omitted the left superscript (N )
because every image is assumed aligned to the current
frame. Hence, the variance of the intensity difference
becomes:

(2.5)Var(ImN−1,t) = Var(ImN−1,x ⋅∆u + ImN−1,y ⋅∆v)

= (ImN−1,x
2 + ImN−1,y

2) ⋅ Var(uv)

where Var(uv) is the variance of the optical flow. There-
fore,

σ 2
f = (ImN−1,x

2 + ImN−1,y
2) ⋅ Var(uv)

In Eq. (2.5) we assume that the errors in u and v are
independent, which is quite reasonable because this is the
error in the model and not the uncertainty in the optical
flow that is usually very unisotropic due to the aperture
problem.



We set the threshold (tvalue) for the tracking statistics in
Eq. (2.4) [16] to

(2.6)tvalue = (σ 2
c + σ 2

f ) ⋅ z

where z is a constant parameter that represents the level of
confidence. In all our experiments, we set z = 3. 0. The
segmentation, which is represented by a binary image is

(2.7)(N ) Itrack =




1 if SSD ≤ tvalue

0 otherwise

We apply postprocessing to (N ) Itrack to reduce the num-
ber of incorrectly identified moving regions. Such false
positives are usually very small, disconnected, have little
or no texture or even not moving. Any form of flow com-
putation is very problematic in such regions and we per-
form postprocessing to eliminate these regions. First, we
identify moving pixels using image frame difference and
store the result in ∆ Im. Second, we extend the conjunction
(∆ Im AND (N ) Itrack) by adding to it those positive pixels
in (N ) Itrack that are in the direct connected neighborhood of
the conjunction.

2.3. Optical Flow
The last step for every region is to compute optical

flow. We warp IN−1 with the computed affine motion
parameters to bring it close to IN and then apply the stan-
dard Lucas and Kanade algorithm [17] with temporal sup-
port of two frames to compute the residual flow. After that
we combine residual flow with the affine flow to compute
the total flow. The Lucas and Kanade algorithm works
really well in this situation because the residual flow is
small (around 1 pixel per frame) and there is no discernible
motion boundary within the region.

Historically, optical flow computation using differential
approach assumes small interframe motion [10]. Although
big interframe motion could be handled by following a
hierarchical scheme [1], optical flow computation in an
image pyramid has strengths and limitations that make it
complementary to our tracking and segmentation method.
For example, a finely textured object which is conspicuous
at full image resolution might be indiscernible at a lower
image resolution. A more serious issue is that a hierarchi-
cal approach would not work well for tracking objects that
are of size comparable to the interframe motion. Consider
for instance an object that is about 60 pixels in each
dimension and moves by about 10 pixels per frame. If we
use a three or four level pyramid to reduce the flow to
about one pixel the size of the object will be 4 or 8 pixels
in each dimension which is comparable to the size of the
Lucas and Kanade [17] regions. Such an object might be
missed by a hierarchical scheme. Luckily the hierarchical

scheme can be relatively easily incorporated into our
method if one wants to take advantage of its proven record.

Another difficulty with optical flow algorithms is the
presence of discontinuities or motion boundaries. Our
motion segmentation and tracking algorithm addresses this
issue by performing motion segmentation first.

3. Experiments
In this section, we present the results of running the

segmentation and optical flow algorithm on several real
image sequences, some with moving background. In gen-
eral, the segmentation result improves over time because as
more frames are processed, we have more history informa-
tion available for motion segmentation. In all the experi-
ments we generate several random seed regions, we track
and segment them and then compute optical flow on them.
Depending on the number of seed regions that we maintain
in the sequence and the complexity of the scene we can
cover substantial portion of the image.

In the first experiment, we show the result of running
our algorithm on the truck image sequence which shows a
turning toy truck in a moving background. The image
sequence is taken by a handheld camera that attempts to
follow the motion of the toy truck. We show two segments
output by our algorithm corresponding to the turning truck
and moving background. The seed regions used for track-
ing are generated randomly. For the truck segment, the
seed region used in the first frame is replaced by another
seed region within the same segment in later frames
because the original seed region does not satisfy the crite-
ria for tracking in later frame. We show the residual hori-
zontal, vertical flow as a gray scale image. The residual
flow computed is small and never exceeded 2 pixels, and
the mean square average is rarely above 0.5 pixels. We do
not use needlemaps to display flow because they provide
rather little accuracy for so small regions. The reason is
simple. A typical segment is 50-80 pixels in each dimen-
sion and the needles in the needlemap cannot be more than
3-4 pixels, which provide little resolution. After that, we
show stabilized versions of the image, where the object
that is associated with a segment appears stationary. We
superimpose a reference grid on the stabilized image. We
measured the drift on the stabilized image with the mouse
and it was less than 1 pixel in 28 frames in the center of the
initial seed region. The purpose of showing the stabilized
image with a reference grid superimposed is to quantify
the accuracy of the tracking.



Fr ames 1, 15, 28 of the turning truck sequence.

Segment corresponding to the turning truck with seed
region highlighted.

Residual horizontal flow as gray scale image.

Residual ver tical flow as gray scale image.

Motion stabilized frames with grid.

Segment corresponding to the moving background.

Figure 3.1: The input image frames show a toy truck
with a hippopotamus on it taken from a handheld
camera that attempts to follow the toy truck.

In the second experiment, we show the result of running
our algorithm on the “zoo animal” sequence. The animals
are on a large piece of paper, the camera is stationary and
the paper is moved by hand. Some of the animals shake.
We show the result of two segments generated from ran-
domly selected corner features: One segment corresponds
to the moving hippopotamus and the other shows the mov-
ing paper/background. The seed regions used for tracking
are relocated by the algorithm in later frames in order to

track the motion of the segment as long as possible.

Fr ames 5, 15, 27 of the zoo animal sequence.

Segment corresponding to the hippopotamus.

Residual horizontal flow as gray scale image.

Residual ver tical flow as gray scale image.

Segment corresponding to the background.
Figure 3.2: The toy animals sequence.

In the third experiment, we show the result of running
our algorithm on the approaching train sequence. The toy
train is moving towards the stationary camera. We show
that our algorithm is able to find a seed region that seg-
ments out the approaching train. The seed region is relo-
cated in later frames of the sequence. In addition, we show
the residual flow as a gray scale images.

Image sequence at frame 1, 14, 26.



Segment corresponding to the train.

Residual horizontal flow as gray scale image.

Residual ver tical flow as gray scale image.
Figure 3.3: The input image frames show a  toy train
moving towards the camera.

In the fourth experiment, we show the result of running
our algorithm on the toy car sequences which shows a toy
car going diagonally from lower right hand corner to upper
left hand corner. We show two segments generated from
randomly selected seed regions: One is the moving car and
the other is the background.

Image sequence at frame 2, 15, 27

Segment corresponding to the central moving car.

Segment corresponding to the background.
Figure 3.4: The input image frames show a toy car
going diagonally from lower right corner to upper left
cor ner.

In the fifth experiment, we show the result of running
our algorithm on the Hamburg taxi sequence. We show the

segment corresponding to the turning taxi from a randomly
generated seed region.

Input sequence at frames 0, 9, 18.

Segment corresponding to the turning taxi.
Figure 3.5: The input image frames show the Ham-
burg taxi sequence.

In the sixth experiment, we show the result of running
our algorithm on the Yosemite sequence which is a syn-
thetic fly through sequence from the Yosemite valley by
Lynn Quann at SRI. We show various segments output by
our algorithm from randomly selected seed regions. We
show the mean square flow error and the mean angular
error [2] for one of the segment between the optical flow
computed by our algorithm and the ground truth of the
Yosemite sequence. For comparison, we also show the
mean square error and the mean angular error between the
optical flow computed using the pure Lucas and Kanade
[17] without segmentation and alignment method and the
ground truth. The error on both algorithms is computed on
the same region and both use the same parameters (same
derivatives, etc) for the Lucas and Kanade algorithm.

The Lucas and Kanade algorithm does not produce
good results on this sequence because the images have
areas of rather little texture and have large interframe
motion. Our algorithm is not affected by the large inter-
frame motion and is minimally affected by the areas of no
texture since they are deemed to move consistently with
the tracked feature.

Input sequences at frames 2, 8, 15.

Segment corresponding to the distant mountain slope.



Segment corresponding to the left cliff.

Segment corresponding to the middle valley.

Needle maps of our algorithm, Lucas & Kanade and
the ground truth.
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compared with the ground truth.
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Figure 3.6: The input image frames show the
Yosemite sequence. Mean square/angular error of
flow estimated by our algorithm and the Lucas and
Kanade algorithm on the left cliff segment shown
above . The ground truth is from Black’s [4] web site.

4. Conclusion
We describe a new algorithm that estimates optical flow

using feature tracking and segmentation. The algorithm
automatically selects a good feature and segments out a
region whose motion is consistent with the motion of the
selected feature. We perform motion segmentation by an
iterative segmentation and tracking process. After that, we
compute the residual flow between the image warped by
the flow derived during the segmentation step and the next
image frame. By following this logic, we identify the
region of support for optical flow computation and at the



same time, avoid the problem of computation of optical
flow across motion boundaries.
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