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Abstract 

Multibody motion segmentation is important in many 
computer vision tasks. One of approaches to solve this 
problem is the factorization approach [3]. But in 
practice, segmentation is difficult since the shape 
interaction matrix is contaminated by noise. This paper 
presents a novel approach to robustly segment multiple 
moving objects by clustering in subspace. We introduce 
a new affinity matrix based on the shape interaction 
matrix and map the feature points into a low 
dimensional subspace. The feature points are clustered 
in this subspace using a graph spectral approach. By 
computing the sensitivities of the larger eigenvalues of a 
related Markov transition matrix with respect to 
perturbations in affinity matrix, we improve the 
piecewise constant eigenvectors condition [10] 
dramatically. This makes clustering much reliable and 
robust. We confirm it by experiments.  

1 Introduction 

Motion segmentation is one of important tasks in 
computer vision. It has many applications including 
structure from motion, video coding and human 
computer interaction. Among many techniques 
discussed in the literature, Costeira and Kanade [3] 
proposed an algorithm for multibody motion 
segmentation based on factorization. Given tracked 
feature points, the technique defines a shape interaction 
matrix  and groups the points into different moving 
clusters without 3D reconstruction. Gear [4] presented 
an alternative method by exploring the reduced row 
echelon form of measurement matrix.  

Q

The drawback of these two techniques is that the 
performance degrades quickly in the presence of noise. 
The reason is that the shape interaction matrix loses its 
discriminate ability when noise present. An improved 
approach provided by Ichimura[5,6] set threshold for 

, it suffered the same degradation. Wu[18] presented 
a method to separate points in subgroup level. But the 
subgroups are obtained using Ichimura's method by 

setting high threshold. In extreme case, it becomes 
point- by-point merging. Kanatani[8,9] proposed to 
work in the original data space by subspace merging, 
and improved the result using dimension correction and 
robust fitting. The subspace merging criterion and the 
number of objects are determined by model selection. 
The subspace merging technique does not guarantee the 
globally optimal segmentation, because it is based on 
local point-by-point interaction. The number of objects 
is critical to whole procession, but it cannot be reliably 
estimated by model selection. 

Q

The most related work is proposed by Inoue [7]. The 
absolute value of shape interaction matrix is used as 
affinity matrix. The feature points are mapped into a 
low dimensional subspace. Clusters are extracted by a 
graph spectral method. It has been shown that, the 
success of spectral clustering can guarantee by a 
proposition: the leading eigenvectors of a related 
Markov transition matrix must be roughly piecewise 
constant [10]. Practically, in the presence of noise, the 
piecewise constant eigenvectors condition breaks down. 
Inoue's method doesn't address this problem. So his 
method degrades when noise present.  

In this paper, we provide a novel approach to robust 
segmentation of multiple moving objects by clustering 
in subspace. Firstly, given the number of objects, we 
compute shape interaction matrix in the subspace of 
measurement matrix. Secondly, instead of using the 
shape interaction matrix Q directly, we introduce a 
new affinity matrix based on Q . Thirdly, after 
mapping the feature points into a low dimensional 
subspace, we compute the sensitivities of the larger 
eigenvalues of a related Markov transition matrix when 
affinity matrix changes. By selecting appropriate 
affinity matrix and computing the sensitivity of the 
eigenvalues with respect to changes in affinity matrix, 
we improve the piecewise constant eigenvectors 
condition dramatically. This makes clustering procedure 
much reliable and well conditioned. Our approach is 
robust to noise due to preservation of the piecewise 
constant eigenvectors condition. This has been verified 
by extensive experiments.  

The organization of this paper is as following: 
Section 2 defines the motion segmentation problem. 
Section 3 describes our approach. Section 4 provides 



experimental results with both synthetic and real data. 
Section 6 gives conclusions. 

2 Background and Basic 
Definitions 

2.1 Shape Interaction matrix 
Suppose feature points are tracked in frames 

under affine camera model. And there are 
n f

N independently moving objects in the scene. The 
coordinate of i th point in th frame is j ( )jiv,jiu . 
The coordinates of all points can be collected into a 

matrix n×f2
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According to [3], without noise and outliers, every 

column lies in a 4-dimensional subspace and the 
rank of measurement matrix is  where 

W
W N4 N  is 

the number of objects. can be decomposed by SVD W
 

TVUW Σ=  
 

If the features from same objects are grouped together, 
will have block diagonal structure.  VU ,,Σ
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This is because every is the result of single 

object factorization [16].  

T
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In reality, we do not know which feature belongs to 
which object. The feature points from different objects 
are mixed in the columns of W . In order to permute 

and group the columns of , Costeira and Kanade [3] 
defined a shape interaction matrix 

W

VV=

∈β

W

N

 
  (2) TQ

 
Q is motion invariant and has a property: 0=ijQ , if 

point ji, belong to different objects; , if point 0≠ijQ
ji, belong to same objects.  
Kanatani [8] reformulated the property of  as a 

pure mathematical theorem. Let the columns of W be 
points

Q

n { }αp
iIi ,
that belong to linearly independent 

subspace 

m
mL,1= , define the interaction matrix 

 as (2), then Q
 

 jiIIQ ji ≠∈= ,,,0 ααβ  (3) 
 

This is called the subspace separation theorem. It can 
be proved purely mathematically without factorization.  
 
2.2  Problem Definition 
 

However, the rank of is difficult to estimate even 
with a small noise component [7]. It makes computing 
the interaction matrix Q  very difficult without prior 
knowledge of the number of objects. Even if the 
interaction matrix  has been obtained, the elements 
of  are nonzero in general. This makes  lose its 
zero/nonzero discriminate ability.  

Q
Q Q

In this paper, we want to solve the following 
problem: suppose points are tracked in many frames 
under the affine camera model, given the number of 
objects, how can we compute the interaction matrix  
and use Q  to reliably segment feature points into 
multiple moving objects in the presence of noise?  

Q

3 Our Approach 

3.1  Compute  if number of objects Q N is 
known 

 
Given the number of objectsN , the shape interaction 

matrix can be constructed by using first Nr 4=  
column of as (2). If V is not known, hypothesize-
and-test approach [7] can be taken or N is estimated 
by model selection [9].  

But we found that, in the presence of noise, it is very 
difficult to estimate the number of the objects. Firstly, 
we tested the model selection approach using synthetic 
data (see Fig.3 and experiment section). We built a 



synthetic scene that consists of two sets of points. The 
rank of the measurement matrix is 8, but the rank 
estimated by model selection [11] is 3. Other test on 
geometric AIC and geometric MDL [9] also showed 
that the rank couldn't be estimated by model selection 
reliably.  

Secondly, we look at the hypothesize-and–test 
approach [7]. As statement in the following section, the 
number of clusters is determined by the leading K 
eigenvectors of a matrix that is based on Q . If 

has K leading eignevectors, but the data is composed 
of N objects where 

L
L

KN > , the data can be grouped 
into K clusters at most. In this case, the hypothesize-and 
–test approach failed.  

We observe that, if there are outliers in measurement 
matrix , for example, the th column of , then 
the correspondent th row and column of interaction 
matrix  have a property: . 

. This is because the outlier only 
has high interaction value with itself and has low 
interaction with other points. This property is utilized in 
our approach to remove outliers.   
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3.2  A Basic Spectral Clustering Method 
 

Given interaction matrix Q , it encodes pairwise 
interaction information of . We propose to use this 
information to map the original feature points to a low 
dimension subspace and group the points in this 
subspace.  

W

Previous work in image segmentation has implemented 
this idea to do bipartite graph segmentation [14,17] and 
extended to multipartite segmentation [10]. This can be 
done by casting the problem into a spectral graph 
clustering problem [1].  

Given a n pairwise affinity matrix , where 
is symmetric and if point 

n× A
A 0=ija ji, belong to 

different clusters. Following the formulation in [2], we 
consider an undirected graph G with vertices 

, and edges ni L1=vi , ijaije = which represent the 

affinity between vertices and . A Markov chain 
is defined by setting the transition probability 

where gives the 

normalizing factor which ensures . The 

matrix form of the definition above is: 
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In practice, we consider the matrix  

 
2/12/12/12/1 −−− == ADDMDDL  (5) 

 
Where is symmetric and computationally more 

stable in eigen-decomposition.  
L

Spectral clustering can be done using following
simple algorithm [12]: 

 
1.  Find the leading K eigenvectors of , if the

number of clusters is known. Form the matrix
L

][ 1 KVVX L= . 
2.  Form the matrix Y from X by normalizing each

of X 's rows.  

3.  Treating each row of Y as a point in KR , using 
K-means to cluster them into K clusters. 

4.  Assign the original point (one column in W ) 
to clusters according to the assignment of th row 
of 

iw
i

Y . 
 
3.3 Improving the Piecewise Constant 

Eigenvectors Condition 
 

The algorithm above is only valid in ideal case. In the 
presence of noise, affinity matrix a if point 0≠ij

ji, belong to different clusters. How can we group the 
points into correct clusters in the noise case? It has been 
shown that, if the points can group into K clusters, the 
leading K eigenvectors of M must be roughly 
piecewise constant [10]. We also found that, if the 
leading K eigenvectors of M are roughly piecewise 
constant, the leading K eigenvalues of M all are 1. 
That is, if we can preserve the piecewise constant 
eigenvectors condition, the points can be grouped into 
several clusters without difficulty. So we propose two 
ways to improve the piecewise constant eigenvectors 
condition in the presence of noise. 

The first is to choose appropriate affinity matrix. In 
our problem, we have got a shape interaction matrix 

where Q 0=ijQ if points ji, belong to different 
objects without noise. We can construct affinity matrix 
based on . One simple way is let [7]. 
But we found that it is vulnerable to noise and easily 
violates the piecewise constant eigenvectors condition. 
We propose a new affinity matrix 

Q )(QabsA =

 
( ) )2/)(/1exp( 2δQabsA −=  (6) 

 
Where δ is a scale parameter. The Gaussian function 

introduces δ  into affinity matrix to control the scale 
of interactions between points. Taking the reciprocal of 
the absolute value of  should make the affinity 

matrix positive and 

Q
0=ijA , if points ji, belong to 

different objects. 



Fig. 1. Two views of a real video sequence.  

We compare these two affinity matrixes using real 
data. We detect and track 30 feature points in 14 frames 
using KLT tracker [15]. Fig.1 shows first frame and 7th 
frame in real video data. Fig.2 shows the leading three 
eigenvectors of two affinity matrixes. Thought the 
experiments, we can see that the new affinity matrix can 
produce better piecewise constant eigenvectors. 
  The second improvement is computing the 
sensitivities of the larger eigenvalues of with respect 
to perturbations in the edge weights. Consider 
symmetric matrix , its eigen decomposition is:  

L

L
 
  (7) TUUL Λ=

Fig. 2. The leading three eigenvectors  ),,( 321 uuu
of two affinity matrixes. - red plus; - blue circle; 1u 2u

3u - black cross. (a) eigenvectors of our new affinity 
matrixes. The correspondent eigenvalues is  

(1, 0.99949, 0.9991). (b) eigenvectors of Q . The 

correspondent eigenvalues is (0.045, 0.0389,0.0360). 
 
Where ],[ ,21 nuuuU v

L
vv= are eigenvectors. Λ is 

diagonal matrix composed by eigenvalues ],[ 1 nλλ L , 

nλλλ ≥≥L2
12/1 −Λ= DUUDM T

≥1 . Then the Markov transition 

matrix . Consider the Markov 
chain in graph G , it propagates iterations. The 
Markov transition matrix after iterations is: 

2/

t
t

 
  (8) 2/12/1 −Λ= DUUDM Ttt

 
It can be found that tM is completely characterized by 

. In other words, the changes of 's eigenvalues 
reflect the changes of transition probabilities in the 
edges of graph . We called this COP (Changes Of 
Probabilities). 

tΛ L

G

 For the vertices ji, belong to different clusters, the 
COP between them is small. In contrast, the COP within 
each cluster is large. This is because the connected 
edges between different clusters are sparse and have 
small weight values, and the connected edges within 
clusters are dense and have high weight values.  

If the edge weight of a single edge between different 
clusters changes, the COP in this edge will more 
sensitive to this change because it has fewer alternative 
routes to take. In contrast, the COP in the edge within 
cluster will less sensitive to this change because it has 
many alternative routes to take. If we can find the edge 
in which the COP is more sensitive to the change of 
edge weight, then cut the edge. This is because, in the 
ideal case of well separated clusters, the weight of this 
edge must be zero. In the presence of noise, the well 
separated clusters become weakly coupled. If the linked 

edge generated by noise can be identified, we can cut 
the edge and recover the original well separated 
clusters.  

Because the changes of 's eigenvalues reflect the 
COP in the edges of graph , we compute the 
sensitivity of eigenvalues of  with respect to the 
edge weight [2], which represents the sensitivity of 
the COP with respect to edge weight.    
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Here ( )ji uu ,

u
 are the  elements of 

eigenvector 

),( ji
v

. are degrees of nodes ( . 
The proof gives in the Appendix. In practice, consider 
larger eigenvalues of (smaller eigenvalues have few 
impact on clustering), we set a threshold 

), ji dd

L

( ), ji

ε  to select 
them except 1(The eigenvalue 1 correspond to well 
separated clusters and does not need to be considered). 
We take 9.0=ε . 

If )(SmedianSij ⋅> δ , cut the edge between 

ji, . δ  takes a high value in order to only cut edges 
with the highest sensitivities.  
 
3.4  The Algorithm 
 



 
Fig.3. Segmentation result of synthetic data when noise=1.0, σ =2. There are three mis-grouping points (indicated  
using black cross). 

Suppose feature points are tracked in frames 
under affine camera model. The coordinates of all 
points can be collected into a matrix . The 

th column of W represents the th point in all 
frames. We want to segment the points into several 
clusters:  

n f

Wnf ×2
kk

Fig. 4. Number of mis-grouping points under noise. 

 
1. Given the number of objectsN , decompose W  

by SVD: W ; Compute the shape 

interaction matrix Q , where V is the 
first columns in .  

TVUΣ=
=

N

TVV ˆˆ
V

ˆ
r 4=

2. If  and other related item 1~iiQ ijQij ≠,0~ , 

point is outlier. Remove it from W . Return to 
step 1, iterate until no outlier removed.  

i

3. Define the  affinity matrix , let nn × A
)2/)exp( 2σijA −= /1( ijQ , σ is scale 

parameter. 
4. Construct a diagonal matrix , let 

and form a symmetric matrix 

 

D

∑=
=

n

i ijii AD
1

2/1 −−= ADDL 2/1

5. Compute eigenvectors [ ]nVVV L,, 21  of , 

with eigenvalues 

L

nλλ ≥L2λ ≥1 . 
6. Pick out larger eigenvalues ελ >k except 1. Here 

9.0=ε . Compute the sensitivities of larger 
eigenvalues with respect to : . A S k dAd k /λ=

7. If )( kk
ij SmedianS ⋅> δ , set . Where 0=ijA

δ is threshold of . S
8. Recompute and eigen-decomposition of . 

Choose the leading 
LD, L

K eigenvectors of , if L
1=,1 Kλλ L . If NK > , form the matrix 

. Otherwise return to step 6.  ]NV[ 1VX L=

9.  Form the matrix Y from X by normalizing each 
of X 's rows. 

10. Treating each row of Y as a point in NR , using 
K-means to cluster them into N clusters.  

11. Assign the original point (one column in W ) 
to clusters according to the assignment of th row 
of 

iw
i

Y . 
12. Check the support of every point within each 

cluster according to . Select the least support 
point and reassign them to clusters.  

A

 
Some notes: 

In the algorithm above, we have three parameters: 
δεσ ,, . The σ is the scale parameter of affinity 

matrix. It reflects the local scale of interaction between 
points. We tend to choose small σ , but if choose a 
very small σ , it tend to make A singular. So we 
choose the smallest σ while A is nonsingular. 
The ε controls number of larger eigenvalues. We 
set 9.0=ε . Theδ is the threshold parameter to select 
large sensitivities in step 8. We set 100=δ  to avoid 
over-cutting .  A

K-means in the step 10 is inexpensively initialized 
using the prior knowledge that the clusters are about 



 
Fig. 5. Shows segmentation result in the first frame of video. Two points in white circles are regarded as outliers.  

090  apart [12]. This makes K-means run only once to 
give final result and does not need to be restarted to 
avoid local minima.  

In the last step in the algorithm, we wish to remove 
the outliers from final clusters. The reason is that we 
have found some points in the clusters often have few 
links and small edge weights with other points within 
same cluster. We must pick out these points and 
reassign them to clusters. If a point has comparable 
distances to all the clusters, it must be outlier.  

The difference between our spectral clustering 
algorithm with eigencuts algorithm in [2] is that, our 
algorithm is intended to segment the points using 
leading eigenvectors by improving the piecewise 
constant eigenvectors condition in the presence of noise. 
The eigencuts algorithm is proposed to solve the weakly 
coupled data clustering problem. It chooses an 
eigenmode to cut edge in an iterate way. We found that 
it often make the matrix singular. This is because 
matrix has too many edges be cut. In contrast, our 
algorithm cut matrix operates on many eigenmodes 
simultaneously. It is computationally more efficient and 
stable.  

A
A

A

4 Experiments 

In this section we provide experimental results with 
both synthetic and real data.  
 
4.1  Synthetic Data 
 

We performed some simulations to analysis our 
algorithm. We build a synthetic scene that consists of 
two sets of points. One set of 30 points placed in a 3D 
cube, and the other set of 15 points represents 
background. These two sets of points undergo different 
and independent motions. We generate 20 frames and 
add Gaussian noise to image points. Figure 3 shows the 
segmentation result when noise=1.0. We choose σ =2. 

We also add Gaussian noise to test the robustness of 
our algorithm. The noise ranges from 0 to 4 with 

interval of 0.1. We perform 30 runs for each noise level 
and compute the average of the mis-grouping error. The 
result is showed in figure 4. We choose σ =2. It can be 
seen that our algorithm can give good result up to 2 unit 
noise. It is approximately 1.5% of image size.  
 
4.2  Real Data 
 

We have also applied our algorithm to some real 
video sequences. The first sequence contains a moving 
head in front of camera. We observe that, the head 
undergoes rotation out of plane and introduces a large 
perspective effect. We detect and track 30 feature points 
in 14 frames using KLT tracker [15] and apply our 
motion segmentation algorithm. Figure 5 shows our 
segmentation result. The two red points on the border 
between hair and background are grouped into 
background. If combined with other cues like color, our 
algorithm will segment these two points correctly.  

We also compare three approaches: one is our 
approach. One is the approach presented in [12]. The 
last one is the approach presented in [7] which based on 
affinity matrix Q . Figure 6 shows the result. We can 
see from it that our approach performs the best.  

Another sequence contains a moving hand and 
background. The result of segmentation is showed in 
Figure 7. We segment the feature points into three 
groups. The performance of our algorithm is excellent. 
But some points in the background are clustered into the 
same group as the moving hand. The reason is that, the 
KLT tracker makes the static points in background 
move with hand when hand passed by. The points share 
same motion with hand in many frames. This forces 
them to be clustered into same group. Segmentation of 
such points against the hand is very difficult.  

5 Conclusions 

The factorization approach to motion segmentation is 
based on the shape interaction matrix. However, the 
noise makes segmentation difficult. In this paper, we 



proposed a spectral clustering approach to segment 
multiple moving objects robustly. By introducing a new 
affinity matrix and computing the sensitivities of the 
larger eigenvalues of with respect to perturbations in 
the edge weights, we improve the piecewise constant 
eigenvectors condition dramatically. The feature points 
are mapped into a low dimensional subspace and are 
clustered using a spectral clustering method. The 
robustness of our approach is verified using synthetic 
and real data.  

L

In the future, we would like to extend the work to 
deal with unknown number of objects case. One 
possible way is using EM algorithm like in [13] . We 
also want to apply the spectral clustering method 
developed in this paper to other problems like stereo 
correspondence.  
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Appendix 

Proof of equation (9): Consider eigen decomposition of 
(7), it can be written as L iii uuL vv λ= , . 

The derivative of 

ni L,1=
λ with respect to is: ijA
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