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Abstract 

This paper presents the results of using a number of 
proprietary algorithms aimed at the real-time moving 
objects detection. The objects are mobile robots and 
human beings operating on a complex and unevenly 
illuminated background (textured floor). The motion 
detection algorithm is based on an adaptive background 
method that models each sub-sample pixel as a mixture 
of Gaussian distributions. This approach yields a stable 
detector dealing well with long-term scene changes, 
however it involves massive computations, and more-
over it takes fast variations of the scene illumination as 
a motion evidence in a sequence of images. Thus, as a 
preprocessor to the motion detection algorithm, a local 
homomorphic filter is used to suppress the illumination 
component, which is time-variable, rendering the mo-
tion detection less sensitive to that environmental dis-
turbance. As it adds an extra processing cost, we pro-
pose to use the combination of homomorphic filter with 
motion detector, which is restricted only to a subset of 
pixels (sampled on uniform grid). From the sub-sampled 
pixels, only the pixels belonging to the moving objects 
are selected as seed points for the region-growing proc-
esses to extract silhouettes of mobile objects. This is 
equivalent to the fusion of the object-attribute related 
information with the motion related information. The 
algorithm can run in real-time on a typical computer 
(Pentium II PC or higher).  

1 Introduction 

Automatic detection of moving objects in image se-
quences is difficult while the scene (background) is 
complex and textured. This is true especially, whenever 
a CCD camera is used and scene-illumination condi-
tions are poor (weak exposition). Shadows and reflec-
tions additionally disturb the motion-based detection 
and mobile objects tracking. 
 Normally, in such circumstances, the detection 
and localization of mobile robots can be achieved by 
placing well detectable color light sources (beacons) in 
the corners of a platform [3]. In some other solutions, 
robots are equipped with infrared beacons. These bea-

cons can be used to detect moving robots. However, in 
some cases, it is not possible to improve the visibility of 
moving objects (their passivity is required). So efficient 
methods, suitable for poor operating conditions (uneven 
and weak illumination, textured background) are 
needed. The goal of the article is to present a solution 
for the case when robots and other vehicles are not es-
pecially prepared but enter the observation space “as 
they are”. In other words, we look for a real-time, im-
age-based detector of passive mobile objects (robots and 
human beings) instead of beacon-based detection meth-
ods. 
 Many researchers working on the image-based 
detection have abandoned non-adaptive methods of 
backgrounding, as they usually involve manual initiali-
zation. Without re-initialization, errors in the back-
ground reconstruction would accumulate over time, 
making such methods useful only for highly supervised 
short-term tracking applications, where there is no sig-
nificant changes in the scene.  
 A standard approach in adaptive backgrounding 
is to average the images over time [9], [4] and thus 
creating a background approximation which is similar to 
the current static scene, except for regions where the 
motion occurs. While this is efficient in situations where 
objects move continuously and the background is visi-
ble during a significant amount of the time, it is not 
robust in the case of scenes with many moving objects, 
especially when moving slowly. With such an approach, 
one cannot handle bimodal backgrounds, the uncovered 
background is recovered slowly, and the single thresh-
old has to be used (predetermined for the entire scene). 
 The paper is organized as follows: Section 2 
describes how to deal with time-variable illumination. 
Section 3 discusses the motion detection by adaptive 
background subtraction. Section 4 describes how to use 
the seeded-region growing to extract the silhouettes of 
mobile objects. Conclusions and final remarks are given 
in section 5. 

2 Dealing with time-variable 
illumination 

The image is typically formed by recording the light 
reflected from an object that has been illuminated by 



some external light-sources. Based on this observation, 
one simple model of the image is the product of the 
illumination component i and the reflectance component 
r. The illumination component is usually varying 
slowly, while the reflectance component is assumed to 
vary rapidly in time [8]. 
 In order to split the image function components, 
a logarithmic operation is applied to pixels of the Re-
gion of Interest (ROI), transforming the multiplicative 
image-function factors to the additive ones. The result is 
then low-pass filtered to obtain log (i), and high-pass 
filtered to obtain log (r). Once the last two components 
have been extracted, log (i) is attenuated and log (r) is 
emphasized to increase the local contrast. The attenu-
ated log (i) component and the emphasized log (r) com-
ponent are then combined and the result is exponenti-
ated to get back to the image intensity domain as it is 
shown in figure 1. 
 

 
 

Fig. 1.  Block diagram of the homomorphic filter. 

 
 In our case, the whole image is uniformly sub-
sampled by selecting pixels over a rectangular sampling 
grid and only the subsampled pixels of the image are 
homomorphically filtered. Low-pass filter used is a 
Gaussian-kernel, whose output is subtracted from the 
logarithmic original, yielding a high-pass component 
[2]. Exponentiation of high-pass component brings the 
reflectance component almost separated. The lowpass 
kernel of size 51 x 51 has been used. To speed up the 
filtering, the Gaussian separability is used [12]. This 
means that we use one-dimensional Gaussian function 
of size 51. The input image is convolved first with a 
vertical one-dimensional Gaussian. Its output is used as 
the input to a horizontal one-dimensional Gaussian 
convolver. Moreover, lookup tables have been imple-
mented to speed up filtering computation [13]. Namely, 
we used lookup tables to perform the logarithm opera-
tion and the filtering computation as well, arriving to the 
multiplication-free algorithm. Figure 2 demonstrates the 
effect of homomorphic filtering. It is clearly visible that 
in the reflectance image (r) illumination effects have 
been strongly suppressed, while object information has 
been preserved. This effect is particularly strong while 
looking at the image-sequence registered under dynamic 
illumination. 

 From the practical point of view, the separation 
works well enough. Of course, the reflectance image 
still contains low-frequency residuals from the illumina-
tion, as the separation of the two components is not 
perfect. 

 

 

 

Fig. 2. The effect of homomorphic filtering on a par-
ticular image from the sequence, without filtering 
(top), with filtering (bottom). 

3 The adaptive subtraction of 
the background  

In order to reduce the computational cost of the reflec-
tance component extraction, the homomorphic filter has 
been applied only to sub-sampled pixels and the result is 
merely an approximation of the reflectance distribution. 
At this point, the adaptive-background method for mo-
tion detection [1], [10], [11] is applied only w.r.t. these 
extracted sub-sampled pixels, i.e., one is looking to 
distinguish the foreground/background only in these 
locations of pixels. To achieve it, each pixel of the sam-
pling grid is modeled as a mixture of five Gaussian 
distributions (for each sample-pixel five mean values, 
five variance values and five weight values at time t are 



maintained). At any time t, what is known about a par-
ticular pixel {x0 , y0}, is its history: 
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where I is the image sequence.  
 
 The probability of relating the current pixel value 
with an appropriate model is:  
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where:  
K - is the number of Gaussian distributions used, 
ωi,t  - is an estimate of the weight of the ith Gaussian in 
the mixture at time t, 
µi,t  - is the mean value and Σi,t - is the covariance 

matrix of the ith Gaussian in the mixture at time t, 
η  - is a Gaussian probability density function.  
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 Each new extracted pixel value of the sub-
sample is checked against the existing five Gaussian 
distributions until the match is found. The matching 
criterion is defined as a pixel’s value lying within 2.5 
standard deviations from the mean of a current distribu-
tion. The mean and variance parameters of the distribu-
tion, which matches such a new observation, are up-
dated as in [1]: 
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where ρ is the learning dynamics coefficient. 
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and  α is the learning rate coefficient (forgetting factor). 
 The prior weights of the distribution at time t are 
adjusted as follows: 

( ) ( )tktktk M ,1,, 1 αωαω +−= −                  (7) 

where Mk,t is 1 for the model which matched and 0 for 
the unmatched models (Gaussians). 
 If none of the five distributions matches the cur-
rent reflectance pixel value, the least probable distribu-
tion is replaced with a distribution having an initial high 
variance, and a low a priori weight and the current 
reflectance value as its mean value. The mean and vari-
ance parameters for unmatched distributions are kept 
unmodified. 

 
 

 
 

Fig. 3.  The most probable background image with-
out sub-sampling (top) and with sub-sampling (bot-
tom). 

 The next step is to decide whether the sub-
sample pixel belongs to the background. In order to do 
that, we sort all the components in the mixture in the 
order of decreasing ratio (ω/σ). In effect, this ratio as-
signs higher importance to those mixture components 
that have been supported by strongest evidence and had 
the lowest variance. The intuitive sense of this ratio is 
related to the fact, that the components, which corre-
spond to the background, typically have more observa-
tions attributed to them and thus vary a little. Then, after 
the components are sorted, it is possible to set a thresh-
old T, separating components representing the back-
ground pixels from the ones representing the fore-
ground. The first B components of the sorted mixture 
are treated as related to the background. Now, if the 
pixel fits best one of the background models, it is 
marked as belonging to the background.  
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 Figure 3 shows the most probable background 
image, displaying chosen dominant Gaussian mean for 
each pixel’s mixture model both for the whole image 



and for the sub-sampled image. Pixel values that do not 
fit the background distributions are considered to belong 
to the foreground. This holds until a Gaussian including 
them is obtained, converting them to a new background 
mixture (which means that sufficient and consistent 
evidence supporting such a conversion is available).  
 It should be noted that the adaptive background 
subtraction algorithm is applied only on the subsampled 
pixels. The resulted sampled background is shown in 
figure 3 (bottom). Figure 3 (top) is given here only for 
comparison, as figure 3 (bottom) alone could be unclear. 
 

 
 

 
 

Fig. 4.  The foreground pixels without preprocessing 
filter (top) and with preprocessing filter (bottom). 

 
 Variations in the illumination of the scene can 
cause problems for many backgrounding methods. In  
[1], one can deal robustly with normal lighting changes, 
but cannot deal with quick changes as caused by cloud 
cover for instance. These changes can sometimes cause 
the necessity of a new set of background distributions, 
which takes 10-20 seconds for the system to stabilize. 
Afterward, tracking will continue unhindered. Figure 4 
(top) shows the foreground pixels in case of method [1] 
applied on the original frame sequence during quick 
change in illumination, the reference image is in Figure 
2 (top). It is evident from figure 4 (top) that the obtained 
foreground pixels are not only due to apparent motion, 

but also are due to quick lighting changes. It is enough 
to compare this figure with figure 2 (top). 
 Figure 4 (bottom) displays the obtained fore-
ground pixels in the case of method [1] as applied on 
the preprocessed frame sequence, during the same quick 
changes in illumination. The corresponding reference is 
here figure 2 (bottom). It is evident form figure 4 (bot-
tom) that most of the foreground pixels are only due to 
apparent motion and not to quick lighting changes as 
before. It is enough to compare this figure with figure 2 
(bottom). It should be noted too that, in figure 4 com-
plete (non sub-sampled) images have been included 
only to enable the localisation of results. The sub-
sampled foreground pixels exactly are displayed in 
figure 5 (top). 

4 The Seeded-Region Growing 
and its robustness to the image-
scale change 

At this point, only the sub-sampled foreground pixels 
are obtained. From these pixels, we have to complete 
the missing foreground pixels in the frame. In other 
words, we have to extract the silhouettes of mobile 
objects as if the adaptive background subtraction algo-
rithm would have been applied for the complete image. 
In order to do the job, the appropriate region-based 
segmentation method can be useful. One possible choice 
is a Seeded-Region Growing method  (SRG).  
 In that case, each one of the sub-sampled fore-
ground pixels is used as a seed-point and the enhanced 
version of the SRG described in [5], [6] is applied. From 
these seed-points region-growing processes start. The 
use of foreground pixels as seed points allows combin-
ing the motion information with the pixel-attribute in-
formation. A variable local threshold value used as 
stopping criterion for the pixel aggregation process is 
statistically estimated. A suitable area (a proper size 
window centered on the seed point) surrounding the 
initial seed point, as its center, is taken for calculation of 
the local mean µ and the local variance σ2. The two 
values calculated as µ ± σ are then used as thresholds 
similarly to [7]. Figure 5 (bottom) shows the results of 
segmentation with SRG method. The aggregated pixels 
are grouped into regions (blobs) by a two-pass con-
nected components algorithm. The insignificant compo-
nents (including few pixels) are then removed, resulting 
in erasing all artifacts from figure 5 (bottom). 
 Working on the extensions of the SRG method, 
leading towards its robustness w.r.t. the seed-point 
choice, it has been experimentally established that the 
SRG segmentation is moreover insensitive to the image-
scale change (up to the spatial discretisation noise). 
Figure 6 demonstrates the stability of the segmentation 
results despite quite abrupt image-scale changes, for a 
single image-frame and one of mobile robots used in the 
experimental setup. 



 
 

 
 

Fig. 5.  The sub-sampled foreground pixels obtained 
with preprocessing filter  (top) and the segmented 
image (bottom). 

 
 To get a quantitative evaluation of that interest-
ing property of the SRG method, the false negative 
detections rate has been calculated for the same image 
at scales ranging from 512 x 512 pixels to 16 x 16 pix-
els, representing the same scene at different scales. This 
is a similar effect as with a discontinuous zoom. It 
should be noted that the false-negative detection rate is 
stable regardless of the scale change. The results are 
demonstrated in the following table: 
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               256 x 256                     128 x 128         64 x 64 

 

Fig. 6. The robustness of the SRG in different scales 
(512 x 512, 256 x 256, 128 x 128, and 64 x 64). 

5 Conclusions 

In this paper, we have developed an algorithm for illu-
mination invariant motion detection by combining the 
adaptive background subtraction algorithm described in 
[1] with the sparse homomorphic filtering. The adaptive 
background algorithm deals robustly with slow/normal 
lighting changes and slow-motion objects. It allows for 
the introduction or removal of objects from the scene 
within a sequence (problem of intruders).  In our appli-
cation, results obtained confirm that homomorphic mo-
tion detection algorithm is absolutely insensitive to fast 
changes, up to very fast variations in illumination. It 
was reported that quick changes in cloud cover dis-
turbed the system described in [1] for 10 to 20 seconds, 
and the tracking faculty was missing during this period 
of time. However, introducing the preprocessing 
(homomorphic filter) eliminated such a drawback com-
pletely. 
 In addition to the illumination invariance, there is 
another gain achieved by sub-sampling of the image 
over a rectangular grid. The computational cost and the 
memory required for the parameters of the five Gaus-
sian distributions, involved to process every pixel in the 
image as in [1], have been considerably reduced without 
destroying the efficiency of this approach. As a result of 
this modification, Stauffer-Grimson method can run in 
real-time on any typical computer. 
 The limitation of the presented method is the 
following: if the moving object is smaller or if the ob-
ject moves from frame-to-frame less than the distance 
between the subsamples, then this object will not be 
detected at all. However, to avoid such situations (sup-
posing that a priori information about the object size is 
available), the grid size can be made fine enough to 
“catch” any one of the objects (mobile robots and hu-



man beings) in a sampling process. Also, it should be 
noted that in the presented examples the frame size is 
768 x 576 pixels, which is a considerably large one, so a 
4 x 4 grid size can be chosen without the risk of missing 
big blobs (robots and human intruders). The appearance 
of these blobs depends upon the distance between the 
camera and the objects on the scene. So the selection of 
the grid granularity has to account for that as well. A 
secondary selection factor is related to the fact that the 
spatial-frequency of sampling strongly affects the proc-
essing time. So there is a trade-off between the accuracy 
of detection and the processing rate. 
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