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Abstract
A novel visual user interface is presented that is based

upon monocular tracking of a sphere dipole, i.e., two
spheres of common fixed radius separated by a fixed dis-
tance. The sphere dipole is a hand-held device, much like
a pen. With a single calibrated camera, the 5 degree-of-
freedom pose of the dipole, comprising 3 translations and
2 rotations, can be effectively tracked in real-time.

A method is derived to resolve the 3-D position of a
sphere from the center and radius of its projected circle.
Tracking the sphere dipole is done in two phases, locking
and following. The locking phase first locates the spheres
by blob detection. The dipole is then followed by making
use of the last known location of the two spheres. Follow-
ing comprises the four processing steps of edge detection,
robust circle extraction, outlier removal, and finally gen-
erating the best fit circle. Whereas the locking phase is
fairly expensive, taking a few (i.e., ∼ 1 or 2) seconds, fol-
lowing is computationally efficient and can be executed in
real-time.

Keywords: circle detection, motion tracking, human com-
puter interaction, visual computer interface

1 Introduction
There has recently been a great deal of interest in the use

of visual data for advanced human-computer interfaces.
Many of these systems use visual tracking of a known ob-
ject to determine cursor location. Some recent examples
include the tracking of a hand-held sphere [1], and track-
ing the human nose [2].

These and other monocular systems consider only the 2-
D position of the tracked object, and ignore the additional
depth dimension that is perpendicular to the camera’s reti-
nal plane. The effective transmission of 3-D information
to a computer has long been of interest, however, and there
are devices that track the 3-D location of an object using

Figure 1: Projection of Sphere Dipole

active light sources, triangulating electromagnetic and ul-
trasonic triangulation ultrasonic signals, etc.

In this paper we describe a new visual user interface
that is based upon monocular tracking of a sphere dipole,
i.e., two spheres of common fixed radius separated by a
fixed distance. The sphere dipole is a hand-held device,
much like a pen. With a single calibrated camera, the 5
degree-of-freedom (dof) pose of the dipole, comprising 3
translations and 2 rotations, can be effectively tracked in
real-time.

This paper continues in Section 2 with a description of
the properties of the projection of the sphere dipole onto
the image plane. The processing steps for tracking are de-
scribed in Section 3. Results and issues are described in
Section 4, and the paper concludes with a discussion of
future work in Section 5.

2 Projection of the Sphere Dipole
We consider the case of a single camera that has been

calibrated so that its intrinsic parameters are known. In
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Figure 2: Conical Projection of Si onto π

particular, the focal length f , aspect ratio sx/sy , and op-
tical center (u0, v0) are known. We assume that the radial
distortion of the optical system is negligible.

The projection of the sphere dipole onto the retinal
plane is illustrated in Fig.1. Both spheres S1 and S2 have
a common fixed radius R and are separated by a fixed
distance D. Let the center of sphere Si be denoted as
Pi = (Xi, Yi, Zi). For a given pose of the sphere dipole,
the projection of Si onto the retinal plane π produces a cir-
cle Ci centered at (xi, yi) with radius ri.

By convention, use of the uppercase (X i, Yi, Zi) de-
notes a coordinate in the camera reference frame, whereas
the lowercase (xi, yi) denotes the corresponding coordi-
nate projected onto π, which necessarily has a Z-value
equal to f . The symbols (ui, vi) denote π locations in pixel
coordinates. From the perspective model;

xi = fXi/Zi = −sxui − u0

yi = fYi/Zi = −syvi − v0 (1)

2.1 Perspective Projection
The problem of detecting the location of circular fea-

tures from their elliptical projections has been studied by
[3, 4], and analytical methods have been developed for de-
termining the 3 dof translation and 2 dof orientation for
these features. In both of these cases, the solution for the
cone centered at the camera frame origin and intersecting

the projected ellipse was explicitly solved. These tech-
niques were also extended to resolve the 3 dof position of
a sphere from its circular projection.

Here we present a simpler solution based upon con-
structive geometry for the case of the projection of a
sphere. Consider the illustration in Fig.2, which shows
a cross section of the right circular cone which has the
camera frame origin as its vertex and intersects π at Ci.
From the relations sin Θ = R/f and tanΘ = ri/f

we derive cosΘ = fR
Ziri

. Substituting these values into

sin2 Θ + cos2 Θ = 1 and taking the positive solution for
Zi gives;

Zi = R

√
1 + f2/ri

2 (2)

2.2 Weak Perspective Projection
We make the assumption that the spheres are moder-

ately far from π, which in practise is the scenario that we
encounter. In this case, the projection onto π corresponds
to a great circle of Si that is parallel to π and is centered
on Pi. Under this weak perspective assumption, the center
of Si can be approximated from the center and radius of its
projected circle Ci.

Let Pj = (Xj , Yj , Zj) be some point on the surface
of Si with corresponding projected point (xj , yj) on the
circumference of Ci. As (xi, yi) is the center of Ci, its
radius ri can be expressed as;

ri
2 = (xj − xi)2 + (yj − yi)2 (3)

Similarly, the radius R of Si can be expressed as;

R2 = (Xj − Xi)2 + (Yj − Yi)2 + (Zj − Zi)2 (4)

Substituting Eq. 3 into Eq. 4 gives;

R2 = (Zjxj/f − Zixi/f)2

+ (Zjyj/f − Ziyi/f)2 (5)

+ (Zj − Zi)2

From the weak perspective assumption, the vector P iPj is
parallel to π, so that Zi = Zj . Substituting this and Eq. 3
into Eq. 5 gives;

R2 = (Zi/f)2[(xj − xi)2 + (yj − yi)2)] (6)

= (riZi/f)2

As Zi > 0, we take the positive solution;

Zi = fR/ri (7)

From this relation, it is interesting to note that the relative
depths of the two spheres can be determined independent
from the camera intrinsic parameters, i.e. r1/r2 = Z2/Z1.



A similar relation holds if the spheres are not of equal ra-
dius. For example, if R1 = kR2, then r1/r2 = kZ2/Z1.
This case is of less interest, as it introduces an ambiguity in
the resolution of the pose of the sphere dipole, unless other
means are used to discriminate between the identity of the
spheres, such as intrinsic color properties.

Once the centers of the two spheres are determined, the
5 dof pose of the sphere dipole can be expressed by a 3
dof translation component and a 2 dof orientation compo-
nent. The translation can be defined as the point (P1+P2)/2
which is exactly midway between the two spheres. The
orientation can be defined by the polar coordinates of the
vector P1P2 that connects the two sphere centers.

3 Tracking
Tracking the sphere dipole is done in two phases, lock-

ing and following. The locking phase first locates the
spheres by blob detection. Locking is invoked upon ini-
tialization, or if ever the dipole position is lost. After lock-
ing, the dipole is followed by making use of the last known
location of the two spheres. Following comprises the four
processing steps of edge detection, robust circle extraction,
outlier removal, and finally generating the best fit circle.
Whereas the locking phase is fairly expensive, taking a few
(i.e., ∼ 1 or 2) seconds on a conventional PC, following is
computationally efficient and can be executed in real-time.
3.1 Blob Detection

Prior to blob detection, a pre-processing step determines
the color signature of the spheres. One sphere is placed in
a defined location in the image. Once the sphere is cen-
tered in this calibration region, the user enters a keystroke
to capture the image frame for processing. Statistical anal-
ysis is then performed on the region to determine its color
properties. The means µj and standard deviations σj are
calculated for each of the respective RGB color channels
(j = {R, G, B}) within the region.

During blob detection, the color signature is used to lo-
cate areas of possible interest. A circular mask CM of
radius rM is convolved through the image. The value of
rM is chosen to be slightly smaller than the radius of Ci

when Si is at its farthest detectable distance from the reti-
nal plane. For every location of CM the three channel val-
ues of every underlying image pixel are compared to the
predetermined statistics. If a certain percentage of these
pixel values lie within 3 σj of µj for each channel, then the
center of CM is marked as a blob location. The percent-
age of pixels that must pass this test to correctly identify a
sphere has empirically been determined as 75%.

True spheres will often give rise to circles that are larger
than rM , so that there may be many adjacent marked pix-
els for a single sphere location. We therefore extract the
convex contour of each connected set of marked pixels [5].
The centroid of each contour is then passed to the edge

extraction step. An example of an input image and the de-
tected blobs is shown in Fig. 3(a) and (b). Both the hand
and the mouse, which have similar intrinsic color proper-
ties to the spheres, are effectively filtered out.

Whereas the model we use for color signatures has the
benefit of being simple, it has a number of deficiencies.
There are more effective color spaces than RGB space for
object discrimination [6], and possible improvements are
discussed in Section 5. Also, this model assumes that the
color signature of the spheres will be nearly constant at all
image locations, and does not take external lighting condi-
tions into account. This process futher assumes that both
spheres have the same intrinsic color properties. If this
were not the case, then it would have to be repeated inde-
pendently for each dipole sphere.
3.2 Edge Detection

It has been shown by Canny [7] that when an estimate
of the edge direction is known, edge detection can be ef-
fectively accomplished by the convolution of the 1-D sig-
nal in the direction tangent to the edge. This reduces the
dimensionality of edge detection from a 2-D to a more ef-
ficient 1-D problem. The center of a blob resulting from
a true sphere Si will be close to the center of Ci. A ray
emanating from this center in any direction will therefore
intersect Ci at close to the tangent direction, as shown in
Fig.3(c). Using ray following to determine edge direction
is much more efficient than the standard techniques of im-
age sharpening, which involve 2-D convolutions.

For each blob, rays are emanated from the center at reg-
ular intervals which we have chosen to be 5o. The total
number of detected edge points for each blob will there-
fore be 72. For each ray, the sequence of underlying image
pixels form a 1-D signal.

Starting from the blob center, the image is sampled at
pixel increments along the ray direction to form the sig-
nal value. At each sampling step, the value mj for each
channel j of the underlying pixel is compared to the color
signature mean µj that was determined during preprocess-
ing. The signal value g(i) at each step i is set to be;

g(i) =
∑

j=R,G,B

(max − (µj − mj))2 (8)

where max is the maximum channel value (i.e., 255). In
this way, the signal is a measure of similarity to the color
signature where the highest value (3× 2553) indicates per-
fect similarity, and low values indicate dissimilarity.

To detect a transition, the signal for each ray is con-
volved with a 1-D mask that is based upon the derivative
of the Gaussian, which has been shown by Canny to be
close to the optimal for step edges [7]. The peak resulting
from this convolution identifies the point that borders the
edge and lies within the sphere. This point is extended by
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Figure 3: a) image, b) extracted blobs, c) rays (every 30o), d) ray edge points (left sphere), e) all edge points, f) tracked circles



another half-pixel in the ray direction to provide a more
accurate estimate of the edge location.

An example of the rays emanating from a blob repre-
senting a true sphere is illustrated in Fig. 3(c). For clar-
ity, only every 6th ray at 30o increments are illustrated.
The 1-D signals and their convolutions corresponding to
the 3 rays oriented at 2 : 00, 3 : 00, and 8 : 00 are plot-
ted in Fig. 4. A derivative of Gaussian mask of size 5
was used, i.e., [3, 5, 0,−5,−3]. The edge points result-
ing from the peaks of the convolved signals are shown in
Figure 3(d). Of the 3, it can be seen that only the edge
point extracted from the 3:00 ray is correct. The signal at
2:00 changes abruptly at radial distance 6, which causes
a false peak in the convolved signal. Conversely, the ray
at 8:00 changes very gradually, and exhibits a false peak
due to a shadow effect. This shadow effect was common
in the sphere regions that where oriented obliquely from
the lighting source. Fig. 3(e) shows all 72 detected edge
points from each ray. While some of these points are noisy
and do not correspond to the true edge, most of them are
quite true. This was often the case under reasonable light-
ing conditions.

The length of the emanated rays may affect the success
of the edge detection. If they were too short, then false
points would be detected, as the true edge would not actu-
ally be encountered. Conversely, if they were too long,
then a peak that corresponded to the image background
could dominate, resulting again in a false edge point. To
limit these effects the ray length is based upon a predefined
limit to the a maximum sphere movement between frames,
which is proportional to the length of the emanated ray. In
the initial detection, the ray length is limited to be slightly
larger than the radius of Ci when Si is positioned at its
nearest detectable location to the image plane.

The output of edge detection are sets of 72 edge points,
one for each possible sphere location, which are next
passed to the circle extraction step.

3.3 Circle Extraction
There exist a number of standard circle extraction tech-

niques, such as the Hough Transform [8], the UpWrite [9],
and recently the Randomized Circle Detection [10] and
[11]. These techniques are designed for use in complex
scenes which contain clutter and occlusions, where there
may be many outliers and multiple circles. Our scenario
is much simpler, as there is only one possible circle per
blob. As well, if the blob is a true circle, then the outliers
are mostly due to poor lighting conditions and will only
comprise a small portion of the 72 edge points.

For these reasons, it is not necessary to employ such
general techniques as those noted above, and a straight-
forward random sampling and consensus (RANSAC) al-
gorithm [12] is sufficiently powerful and efficient. At each
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Figure 4: Radial Signal and Convolution

iteration, three edge points are randomly selected, and the
center and radius of the unique circle defined by these 3
points is determined. A score value is set to zero, and the
distances between all edge points and the circle are calcu-
lated. Every point that is closer than a certain maximum
distance, chosen to be

√
2 pixels, is deemed to fall on the

circle, and the score value is incremented. In this way, the
arbitrary selection of the three points to generate the cir-
cle model is the random sampling stage of the algorithm,
and the calculation of the score is the concensus stage. The
process iterates by randomly selecting three new points and
repeating. At the end of a predefined number of iterations,
the circle with the largest score is returned.

As we know the exact number of edge points, we can
determine the number of iterations required to identify a
circle within a certain likelihood of success. The number of

ways to select subsets of 3 points from a set of N is
(

N
3

)
,

which for N =72 is 59640. If all of the points are inliers
(i.e., lie on the circle) then it is necessary to select just one
of these subsets to extract the true circle. Alternately, if any
of the points are outliers, then it is necessary to generate
and test all of the subsets to identify the true circle with
100% certainty.



Let e be the ratio of outliers in the set of N points. The
number K of subsets of 3 points that has at least one outlier
is;

K =
1
3!

[ (N(1 − e))(N(1 − e) − 1)(Ne)

+ (N(1 − e))(Ne)(Ne − 1) (9)

+ (Ne)(Ne − 1)(Ne − 2) ]

The probability of selecting M such subsets consecu-
tively is then (K/

(
N
3

)
)M . Conversely, the probability of

selecting M subsets such that at least one subset does not
have an outlier is;

1 −

 K(

N
3

)



M

(10)

An application of Eq.10 shows that, for N = 72 and as-
suming the proportion of outliers to be 25%, only M =3
random samples of 3 points are required to identify a true
circle with 99% confidence. For 50% outliers, M=5 sam-
ples are required. In practise a single iteration of the ran-
dom sampling is quite efficient, so we tend to use a value
of M > 50 iterations so that detection of the true circles is
almost a certainty, even when the proportion of outliers is
large.

Outliers are identified as those points that do not lie
within

√
2 pixels of the extracted circle’s circumference.

The circle is then verified by determining the number of
inliers that satisfy the color signature, and it is discarded
if greater than 10% of the inliers are not within 3σj of the
mean color µj for each channel j. The inliers of the re-
maining circles are then passed to the optimal circle fitting
step.

3.4 Optimal Circle Fitting
For each subset of 3 points chosen from the inliers, there

will in general be a unique circle. It still remains therefore
to determine the equation of the circle that best describes
these data. It has been shown in [13] that an exact (albeit
biased) solution to the best-fit circle can be derived by min-
imizing the error of the circle area. The center (x̄, ȳ) and
radius r are defined as;

x̄ =
c1b2 − c2b1

a1b2 − a2b1

ȳ =
a1c2 − a2c1

a1b2 − a2b1
(11)

r2 =
1
n

(
∑

x2−2
∑

xx̄+nx̄2+
∑

y2−2
∑

yȳ+nȳ2) (12)

Here, the summations are taken across all n inliers, and the
parameters are defined as;

a1 = 2(
∑

x
2 − n

∑
x2)

a2 = b1 = 2(
∑

x

∑
y − n

∑
xy)

b2 = 2(
∑

y
2 − n

∑
y2)

c1 = (
∑

x2

∑
x − n

∑
x3 +

∑
x

∑
y2 − n

∑
xy2)

c2 = (
∑

x2

∑
y − n

∑
y3 +

∑
y

∑
y2 − n

∑
x2y)

(13)

4 Discussion
The method was implemented on a PC platform using

the Intel OpenCV computer vision library [14]. The sen-
sor used was an Intel Pro Video PC Camera, which is an
inexpensive commodity Webcam, which produced images
of 320 × 240 pixel resolution. Our sphere dipole was con-
structed from two table-tennis balls glued to the end of a
pencil. The sphere dipole was not constructed to any mea-
surement specifications, and this limited the accuracy of
the system, as did the limited accuracy of the camera cali-
bration. The routines supplied in the OpenCV library were
used for camera calibration, but the accuracy of the result-
ing calibration was not determined. Also, the radial distor-
tion parameters were ignored.

Qualitatively, the system was believed to work well,
tracking the sphere in real-time for a number of motions
under a variety of reasonable lighting conditions. Some
examples of the tracked dipole are illustrated in Fig. 5.
Whereas the achievable measurement accuracy is of inter-
est, it is not crucial for the main anticipated applications.
The system is very inexpensive, comprising only a single
Webcam and the sphere dipole. Consequently, this tech-
nology is perfect for consumer applications where the ac-
curacy is not that important of a factor, but cost is, such
as games, 3-D graphic design, and animation. Systems
that require high accuracy, such as image-guided medical
systems and AR, are likely to have a higher tolerance for
costlier solutions based upon active and multiple sensors.

5 Conclusions
In this paper we have presented a simple technique to

extract the 3-D locations of a pair of spheres. This is done
by analyzing the centers and radii of their projected cir-
cles onto the image plane. Using the intrinsic parameters
of the sensor, this allows 5 dofs to be extracted when the
spheres are connected in a dipole device. This information
is then used to develop an algorithm for real-time tracking
of a sphere dipole. Our implementation of these techniques
used commodity hardware, and the success of the system
so far suggests that these techniques have significant po-
tential for 3-D consumer interfaces. This is particularly
promising for CAD, 3-D graphic design, and game appli-
cations.
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Figure 5: Examples of Tracked Sphere Dipole



Future research will be focused towards improving the
overall robustness of the system. By changing the color
space to a more representative color model, the blob detec-
tion and edge detection will become more invariant to the
lighting conditions. This will improve functionality in the
widely different lighting conditions expected in an uncon-
trolled office or home environment. A good candidate for
this is Hue, which is a representation of the intrinsic color
of the object. In Hue space white is a high intensity highly
saturated color, the color of the spheres should be changed
to provide a more definitive color signature.

The color signature is currently determined by sampling
the sphere at one location in the scene. It may be beneficial
to sample the sphere at multiple locations to account for
the changing illumination conditions throughout the scene.

The convolution mask for the edge extraction step is
currently based upon the derivative of the Gaussian. This
has been shown to be near optimal for step edges, but tends
to underestimate the sphere edge, as can be seen in Fig. 5.
It may be possible to design a mask which is particularly
tuned to the signal that is encountered along a ray, thereby
increasing the accuracy and robustness of the edge extrac-
tion.

Robustness of the initial locking phase will be improved
by adding a distance pruning method. Currently, in blob
detection, false regions may be extracted from background
features that happen to match the color signature. In the
current process, these false regions will result in circles,
so that the number of detected circles can be greater than
2, which confuses the dipole localization. An improvement
would compute the relative distance of all pairs of extracted
spheres, and discount (prune) those pairs that are outside of
the true sphere dipole separation distance D.

Experiments will also be conducted to determine the ac-
curacy and repeatability of the system. This could be done
by having a robotic arm hold the dipole and repeat a se-
ries of movements. The robot provides a repeatable series
of movements which can easily be compared to the out-
put of the system. Included in this is the development of
representative measures to quantify the effectiveness of the
system.

We also plan to interface and apply the system to a num-
ber of example applications, such as games.
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