
Replacing a Mouse with Hand Gesture in a Plane-Based
Augmented Reality System

Chris McDonald1, Gerhard Roth 2
1 School of Computer Science, Carleton University, Ottawa, Canada, K1S 5B6

2 Computational Video Group, IIT, National Research Council, Ottawa, Canada, K1A 0R6
http://www.cv.iit.nrc.ca/research/ar

Abstract
A modern tool being explored by researchers is the
technological augmentation of human perception known as
Augmented Reality (AR). In this paradigm the user sees
the real world along with virtual objects and annotations of
that world. This synthesis requires the proper registration
of virtual information with the real scene, implying the
computer’s knowledge of the user’s viewpoint. Current
computer vision techniques, using planar targets within a
captured video representation of the user’s perspective,
can be used to extract the mathematical definition of that
perspective in real-time. These embedded targets can be
subject to physical occlusion, which can corrupt the
integrity of the calculations. This paper presents an
occlusion silhouette extraction scheme that uses image
stabilization to simplify the detection of target occlusion.
Using this extraction scheme, the paper also presents a
novel approach to hand gesture-based interaction with the
virtual augmentation. An implemented interaction system
is described, which applies this technology to the
manipulation of a virtual control panel using simple hand
gestures to simulate mouse control.

Keywords: Gesture recognition, augmented reality, virtual interface,
image stabilization, occlusion detection, computer vision.

1 Introduction

A new field of research, whose goal is the seamless
presentation of computer generated information added to a
user’s natural perspective of the world, is called
Augmented Reality (AR) [1]. Augmented Reality is a
perceptual space where virtual information, such as text or
objects, is merged with the actual view of the user’s
surrounding environment. This can be accomplished in a
number of ways; for example, by using head mounted
displays, or by looking through a liquid crystal view port.
What is important is that the user be able to see both the
real world, and the virtual information that is used to
augment that world, and to see both at the same time. The
applications of augmented reality are wide and varied, from
entertainment to manufacturing to medicine [1,2,13]. In

order for the computer to generate the correct contextual
information, it must first understand the user’s context.
The parameters of this context are limited to environmental
information and the user’s position and orientation within
that environment. With such information, the computer
can position the augmented information correctly relative
to the surrounding environment. This alignment of virtual
objects with real scene objects is known as registration.
Without a good solution to the registration problem the
augmented information appears at the wrong locations, or
is incorrect, which destroys the impact of the AR system.
Solving the registration problem robustly, accurately, and
in real-time is the key research issue in augmented reality
[14]. This problem has not been solved in general for an
unstructured environment. For this reason, structure is
often added to the environment, usually in the form of
targets. The most common and successful target based AR
system uses planar targets [10,8]. These targets are
recognized and tracked in real-time using a standard single
video camera vision system. The co-ordinate frame
associated with the target provides a natural location for the
augmented objects. Many applications have been built on
this type of plane-based AR system [5,16,18].

Figure 1 – Augmentation on planar pattern

In order for proper tracking to occur it is necessary to
compute a planar homography [19] between the detected
targets in the video sequence and the stored pattern of these
planar targets. This homography defines a warp from the
original stored two-dimensional pattern to its location in
the image frame. From this homography, the necessary

camera parameters can be extracted [15] to define a 3D
coordinate system on the image-space target. This
coordinate system is then used as an origin for augmenting
the virtual objects. As the target and/or camera move, the
homography is updated in real-time. This ensures proper
alignment of virtual objects with the real scene in each
frame of video.

One important capability that is missing in most AR
systems is the ability to interact with virtual environment.
Examples of such interaction are manipulation of common
virtual representation in collaborative AR, or even more
simply, the ability to change or adjust the augmentation to
suit current conditions. In the vast majority of current AR
systems the user is left with few mechanisms for interacting
with the virtual augmentations. One option is the use of
hardware devices such as gloves or touch screens [18].
While these are effective to a degree they are physically
restrictive given the special freedom goals of Augmented
Reality. An interesting alternative is the use of natural
human gestures to communicate directly with the
environment. Gesture recognition has been explored
mainly for the purpose of communicative interaction.
Gesture systems have explored many aspects of hand
gesture including three-dimensional hand posture [5] and
fingertip motion [11,17,4]. The system presented in this
paper attempts to bridge these two fields of study by
describing a hand gesture system that is used for
manipulative interaction with the virtual augmentation.

The idea is to use a planar-based AR system, and to allow
the user to change or adjust the augmentation by using
hand gestures directly over the pattern. In traditional
pattern based AR systems when the planer pattern is
occluded the augmentation process fails. In previous
research [10], we describe how to extend a planar-based
AR system to be able to tolerate occlusions. In this research
we describe a system in which hand occlusion of the planar
pattern is utilized to make it possible to interact with, and
modify the augmented world.

While natural human gestures are too complex to recognize
in real-time, we define a simple gesture model that allows a
practical interactive medium for real-time Augmented
Reality systems. These simple hand gestures enable use to
simulate mouse control over a virtual control panel defined
on top of the pattern. More precisely, augmentation
proceeds as usual on the pattern until the hand occludes it.
Then, as is shown in Figures 6 and 9 we are able to modify
the interaction by for example, stopping and starting the
augmentation. This is a novel approach to hand gesture-
based interaction with the virtual augmentation. To our
knowledge, this system, which was partially described in
[9,10], is a unique in that it enables hand interaction with a
planar-based AR system.

In this paper we concentrate on the details of the gesture
model used for this application. In particular, we describe
how we use image stabilization to detect the occluders, and
then discuss the gesture model and the gesture recognition
system. Our gesture system is tailored to be as simple and
robust as possible, and yet still be able to duplicate the
mouse operations of selecting and pointing. In other words,
it is a simplified gesture model that is tailored to this
application.

2 Stabilization for Occlusion
Detection

Our goal in this section is to describe how we detect the
occlusion of the planar pattern in real-time. The input is the
image containing the occluded pattern, and the output
should be a binary image (essentially a 2D silhouette) of
that pattern. This process is made more difficult because in
augmented reality systems, both the camera and the target
may be moving independently. To simplify the occlusion
detection, the image sequence is stabilized to remove the
effects of camera motion. Many camcorders use image
stabilization to remove the jitter caused by camera motion
during the video capture. In the context of the tracking
system described in [10], stabilization is performed on the
captured image relative to the original stored target pattern.
This effectively removes both the rotational and
translational motion of the camera, enabling image
subtraction for occlusion segmentation.

2.1 Image Stabilization
Image stabilization is a technique used to remove the
effects of camera motion on a captured image sequence [3].
Stabilization is normally performed relative to a reference
frame. The effect of stabilization is to transform all the
image frames into the same coordinate frame as the
reference, effectively removing camera motion. When the
reference frame contains a dominant plane, the stabilization
process is simplified. In order to stabilize, it is first
necessary to track planar features from frame to frame in
the video sequence. From these tracked features it is
possible to construct a frame-wise homography describing
any frame’s transformation relative to a reference frame.

In terms of this system, pattern space is defined by the
corner feature positions of the front-facing original pattern,
and this remains fixed. Each captured video frame
describes a new position of the pattern in image-space.
Therefore for each such frame a new homography is
computed to describe the relationship between the pattern
positions in the two spaces. The constant nature of pattern-
space implies that if the inverse of this homography is
applied to the captured image, then this image will be
stabilized. In effect, the camera motion can be removed

from all the frames in the AR video sequence by applying
this inverse homography transformation. Figure 2 shows
the stabilization (b) of a captured image frame (a) relative
to the detected target.

 (a) (b)

Figure 2 – (a) Captured video frame (b) Stabilized
representation relative to the target

2.2 Occlusion Extraction
With a stabilized image, the problem of occlusion
extraction can be reduced to image subtraction and
segmentation. Image subtraction is the computed pixel-
wise intensity difference between two images. This
technique is commonly used to detect foreground changes
relative to a stationary background in a video sequence.
This form of image subtraction is referred to as background
subtraction. An image, known to contain a stationary
background, is stored and used as the reference image in
the subtraction algorithm. Assuming a fixed camera
position relative to the scene background, any significant
pixel differences will indicate the introduction of one or
more foreground objects, which in our context are the
occluders.
The subtraction process computes the absolute difference
between the stabilized image frame and the original pattern.
Figure 3 shows an example of the difference image (c)
associated with the given stabilized image (a) and pattern
(b). Here there are no occluders, and any differences are
simply due to lighting variations, or slight errors in the
computed homography.

 (a) (b) (c)

Figure 3 – (a) Stabilized image frame (b) Original
pattern (c) Absolute difference image

The next step in the extraction process is image
segmentation. Image Segmentation is the process of
separating regions of varying intensities in order to isolate

certain regions of interest in the image [7]. In this case, the
goal is to segment or find the occluders in the subtracted
image. The particular segmentation algorithm used to
achieve this goal is called binarization. It takes the
difference image, which is a grey-scale image, and
transforms it into a binary image. There are many
binarization algorithms, and we choose a simple fixed
threshold binarization algorithm. A fixed Binarization
threshold value is chosen to suit the current lighting
conditions of the captured scene and is used throughout the
image sequence. This process segments the image into two
distinct regions, one representing the occlusion and the
other representing the un-occluded portions of the
stabilized target.

In order to analyze the characteristics of the current
occlusion, the occluder has to be extracted from this binary
image and stored in a tangible form. The extraction
process scans the binary image in order to build a more
useful representation of the occluders. Although the binary
image contains mainly occlusion pixels, there exist
spurious pixels that correspond to camera noise and pixel
intensities that fluctuate near the threshold boundary. In
order to gather only the pixels of the occluders, a connected
region search is performed. The result of this process is a
group of connected binary pixels, called a binary blob, that
represent the occluder. All blobs containing more than 60
pixels are considered to be valid occluders. Figure 4 shows
the binary blob computed from the stabilized image in
figure 2(b).

Figure 4 – Binary blob of stabilized target occlusion

3 AR Interaction through Gesture

Once the captured video frame has been stabilized and
occlusion has been detected and defined in terms of binary
blobs, the interaction problem becomes one of gesture
recognition. As described in section 2, target occlusion is
detected and defined relative to the target plane. Since all
virtual augmentation is defined relative to the target plane,
interactivity between real and virtual objects can occur
within this common coordinate system. The following
section describes a hand-based interaction system using
gesture recognition. Our goal is to provide the simplest
gesture recognition system for two-dimensional
manipulative interaction similar to the common mouse.

Currently, using a mouse to manipulate a window interface
is commonplace. Our system provides a mouse-like
gesture based interface to an immersed AR user without the
need for the cumbersome mouse. To simulate a mouse
requires the recognition of both point and select gestures in
order to generate the appropriate mousedown and mouseup
events at the indicated location. This goal is achieved
without the need for a sophisticated gesture recognition
system such as [11] involving complex finger tracking for
gesture inference through motion. Instead, the gesture
model is specialized for the task of mouse replacement.
Performing the gesture analysis in pattern-space simplifies
the image processing and creates a very robust gesture
recognition system.

3.1 Gesture Model
In order to define an appropriate set of gestures, the
requirements of the application must be well defined. The
requirements of our gesture system are as follows: real-
time system performance, the use of commercial PC and
camera hardware, and hand-based interaction without
hardware or glove-based facilities.

The real-time requirement of the system poses great
restriction on the level of gesture recognition that can be
implemented. Commercial hardware may also limit system
performance, as well as limit the quality of image capture
on which all computer vision-based, image analysis
techniques rely. The third requirement forces the use of
computer vision to recognize hand gestures, which is
performance-bound by the processor. The approach used
has been formulated to satisfy the requirements event with
these restrictions.

The goal of this interaction system is to provide the user
with a virtual interface to control the augmentation system
properties. In other words, the goal is to allow the user to
change system parameters through manipulative gestures in
real-time. The interface is designed to be a control panel
that is augmented on the planar pattern. The user should be
able to interact directly with this augmented control panel
on the 2-dimensional planar pattern. This allows the user to
directly manipulate the set of controls provided on the
panel. The original 2-dimensional planar target can be
fixed in the environment or carried by the user and shown
to the camera when the interaction is desired. For these
reasons it is assumed that only one hand will be free to
perform the gestures over the target pattern. With the
application requirements described, a gesture model can be
defined.

Complex manipulation such as finger tapping can be
recognized with the use of multiple cameras to capture
finger depth information. However, under the constraints
of a single camera system, the occlusion blob detection
described in the previous chapter provides only two-

dimensional information about the occluding hand. For
this reason, the gesture language is based exclusively on
hand posture. The hand is described in pixel-space as the
union of the detected occlusion blobs; each blob
representing a finger or a set of grouped fingers. Given
that our goal is to replace a mouse, there are only two
classifications to which the recognized hand postures can
belong; a pointing posture and a selecting posture. The
notion of pointing and selecting can vary between
applications, so they must be clearly defined for each
application. In this application, pointing is the act of
indicating a location on the planar target relative to its top
left corner. Selecting is the act of indicating the desire to
perform an action with respect to the pointer location. In
terms of the gesture model, the parameters associated with
each posture are: a pointer location defined by the
prominent fingertip, and a finger count defined by the
number of fingers detected by the system.

3.2 Gesture Recognition
The gesture recognition system proposed in this paper
applies the defined gesture model to a working Augmented
Reality application system. The system begins by
analyzing the captured video frame using the computer
vision techniques described in section two. At this point,
posture analysis is performed to extract the posture
parameters in order to classify the gesture. If classification
succeeds, the recognized gesture is translated into the
event-driven command understood by the interactive
application.

3.2.1 Posture Analysis
The two parameters of the gesture model related to the
posture description are the location of the fingertip used for
pointing, and the number of distinct fingers found during
extraction for selection.

Fingertip Location

To determine the location of the user’s point and select
actions a pointer location must be chosen from the hand
point set. To simplify this process, the current system
constraints were exploited and a number of assumptions
were made. The first useful constraint deals with the
amount of target occlusion permitted. The planar tracking
system used for augmentation assumes that approximately
half of the target corners are visible at all times during the
tracking phase. To satisfy this constraint, only a portion of
a hand can occlude the target at any given time. For this
reason, the assumption is made that the only portion of the
hand to occlude the target will be the fingers. From this we
get:

Assumption 1: Separated fingers will be detected as
separate blobs in the image analysis phase.

Due to the simplicity of the desired interaction, a second
assumption was made:

Assumption 2: Fingers will remain extended and relatively
parallel to each other. This is also a reasonable assumption
due to the fact that pointing with one or more extended
fingers is a natural human gesture.

The third constraint used to simplify the process was the
following:

Assumption 3: Any hand pixel set will contain at least one
pixel on the border of the pattern-space representation of
the current frame.

Using all three assumptions the posture analysis process
begins by selecting the largest detected finger blob.
Characteristics of the blob are extracted using shape
descriptors of the blob pixel set.

Using central moment theory [12], the center of gravity and
orientation of the largest detected finger blob are
computed. This provides enough information to define the
principal axis of the blob, shown in figure 5 as the long line
cutting the finger blob. The next step of the fingertip
location process involves finding a root point on the
principal axis. This represents an approximation of where
the finger joins the hand. This simplification holds as a
result of assumption 2. Using assumption 3, a border pixel,
rb, is chosen from the blob and its closest principal axis
point, rp, is chosen as the root. The farthest pixel in the
blob from the root point, tb, is chosen as the fingertip
location.

Figure 5 - Finger tip location using blob orientation

Finger Count

Using assumption 1, the posture of separated fingers will
be classified uniquely from that of single or grouped
fingers. In other words, the finger count can be quickly
determined by finding the number of detected blobs, as
demonstrated in Figure 6. These two described posture
characteristics are used to classify two simple gestures,
point and select, on the target plane.

 (a) (b)

Figure 6 – (a) Single finger blob (b) Two finger blobs

3.2.2 Interaction in an AR Environment

This simple gesture model describes two gestures classified
by the interaction system – point and select. The point
gesture is the combination of a single finger and a pointer
location. A single group of fingers along with a pointer
location is also classified as the gesture of pointing. The
selection gesture is the combination of multiple fingers and
a pointer location. An example of the recognized point and
select gesture are shown in Figure 7(a) and 7(b)
respectively. In this demonstration application the gesture
system recognizes the colour region occupied by the finger
pointer and also recognizes when selection has occurred.

 (a) (b)

Figure 7 - Gesture recognition
(a) Point gesture (b) Select gesture

The interaction created by this gesture model is a point and
select mechanism similar to the commonly used mouse
interaction with a window-based operating system. To
allow a closed system of human-computer interaction, the
actions generated by the hand gestures define a set of
system states. The possible states of the gesture system are
pointing, selecting and no hand detection. The transitions
between states are triggered by a change in finger count.
This transition is represented by a pair of values, (cp,cc),
indicating the previous and current finger counts. The
possible values for cp and cc are 0, indicating no hand
detection, 1, indicating a single detected finger pointer, and
n, indicating more than one detected finger pointer. This
state machine, shown in figure 8, begins in the no hand
detection state.

Figure 8 - Gesture system finite state machine

3.3 AR Hand Gesture Application

3.3.1 Virtual Interface

This gesture model defines a basis for simple human-
computer interaction on a plane. The most common and
widely used planar interaction interface is the mouse,
which is found in all window-based operating systems.
This type of interface took shape as a result of innovative
suggestions for two-dimensional, monitor-based
interaction. Over the years, window-based technology has
advanced providing a rich toolset of interface widgets and
their associated behaviour mechanisms. For this reason our
gesture-based interaction system uses the pre-existing
windows-based software technology to construct a virtual
control panel system. The effect is to couple the power and
visual appearance of the pre-defined windows widgets with
the augmented interaction platform. This is done through
an underlying, interpretive, communication link between
the gesture interaction and an instantiated windows control
panel dialog box. It is through this interpreter that gesture
actions are converted into the operating system events that
are understood by the dialog box. The widgets on the
dialog box are assigned behaviour actions that are executed
when the widgets are manipulated through our hand-based
gesture system. In this way the user can directly
manipulate a virtual representation of the dialog box. By
performing gesture actions over the dialog box the
appropriate behavioural feedback is presented to the user
through the virtual representation.

The control panel paradigm presented here is based on a
direct mapping of pattern-space coordinates to control
panel dialog coordinates. This mapping is simplified by
using a control panel dialog that has dimensions
proportional to the 64x64 pixel target in pattern-space. A
snapshot of the dialog window is taken during each render
cycle and stored as an OpenGL texture. This texture is
applied to a rendered polygon that is positioned over the
target. By updating the snapshot every frame, the visual
behaviour of the control panel dialog is presented to the
user. For example, when a button goes down on the

control panel dialog box, the change in button elevation is
reflected in the virtual representation. Figure 9 shows an
example of a simple control panel dialog box (a) that was
built using standard window-based programming libraries.
The virtual representation of this dialog box is shown in
9(b) where the stop button is being pressed. In other words,
the two fingers are interpreted as a mouse down, which is
sent to the control panel to effectively press the stop button
by using hand gestures.

 (a) (b)

Figure 9 – (a) Control panel dialog (b) Virtual
representation augmented on the target

By using an actual dialog box in the system, the power of
the standard window-based programming libraries can be
exploited. These libraries simplify the process of adding
system behaviour to an interface as well as reducing the
complexity of the visual interface components.

3.3.2 Hand-Based Interaction

With this visual feedback mechanism in place, a
mechanism for initiating interaction with the controls on
the panel is described. The behaviour associated with
control manipulation is defined in the normal event driven,
object-oriented fashion associated with window–based
application programming. Applying the gesture model to
this augmented interaction requires only a simple
communicative translation between the gestures, including
posture parameters, and the event-based control
manipulation. This translation is defined in terms of the
gesture state machine outlined in figure 8. For example,
when a selection gesture is recognized immediately
following a pointing gesture, a mousedown event is sent to
the actual control panel dialog, along with the pointer
location parameter as if it were sent by the mouse
hardware. This way, when the gesture occurs over a button
on the virtual panel, the event generates the equivalent
button press on the dialog box. On the other hand, when a
pointing gesture immediately follows a selection gesture, a
mouseup event is sent to the dialog along with the
associated pointer location.

Figure 10 shows a set of images demonstrating the hand-
based AR interaction system. The system begins by
searching for a target in the captured scene. Once the

target is detected, augmentation begins as the target is
tracked through the video sequence. In this application, the
default augmentation is a video sequence of a three-
dimensional, rotating torus rendered over the target (a).
When the system detects target occlusion, the occlusion is
assumed to be the user’s hand. For this reason, the virtual
control panel (b) is augmented in place of the torus video.
The control panel remains augmented for every frame
where target occlusion is detected. A selection operation is
demonstrated by showing multiple, separated fingers (d)
after showing a single detected finger (c). During this
operation, the dominant finger remained over the stop
button on the control panel, which resulted in a button
press (d) triggered by the mousedown event. An associated
mouseup event was generated by bringing the two fingers
back together in order to return the gesture system to the
pointing state. The programmed behaviour associated with
this control widget was to stop the augmented video
playback. The system continues to track the target and it
halts the augmented torus video. When the user points at
the play button on the control panel and performs the
selection operation and then performs a point operation, the
mousedown and mouseup events trigger the behaviour of
continuing the torus video playback in the AR panel.

Figure 10 – (a) Augmented torus video (b) Virtual
control panel appears when occlusion is detected (c)
Point gesture over the stop button (d) Select gesture

over the stop button

3.3.3 Interface Limitations

Due to the limitations of the occlusion detection system,
the interface must adhere to certain restrictions. The
occlusion detection is performed in pattern-space, which is
a 64x64 image size. This means that regardless of the

target dimensions, the detected pointer location will be one
of 4096 pixels. This location is proportionally scaled to the
dimensions of the dialog box. In other words, the pointer
precision is directly proportional to the dimension scaling
and therefore the precision of the pointer is limited. For
this reason, the widgets on the control panel need to be
large enough to allow for this precision degradation. The
other restriction placed on the interface design is the
accuracy of the gesture recognition system. The
implemented system provides the functionality to
manipulate any controls that require only a point and
single-click interaction, including the sophistication of the
drag-and-drop operation. The success of this interaction
relies directly on the success of the gesture recognition
system, which in turn relies on the integrity of the
occlusion detection system.

If the occlusion detection is in error this translates directly
into undesired control manipulation. As an example, if a
slider control is presented on the control panel, the user has
the ability to select the slider knob, drag it by continuing to
select while the hand is in motion, and release the knob by
returning the hand to a pointing posture. While attempting
to drag the knob, the effects of hand motion or lighting
changes can cause the occlusion detection results to
change. This could mean a change in blob count or even
an undesired shift in the detected pointer location. For
these reasons, complex widget manipulation is not yet
practical, and is left outside the focus of this paper. The
current system uses only large-scale buttons to perform
monotonous system functions.

4 Results and Discussion

As with all technological applications, the value and
acceptance of AR applications are directly proportional to
the system performance experienced by the user. It is also
true that the limiting factor in an application’s feature set,
aside from developer knowledge, is the overall
computational power of the computer system on which it is
run.

4.1.1 Computation Time

The first measure of performance is to examine the
computational breakdown of the main application steps.
This measure highlights areas of significant computational
complexity relative to the others. Table 1 shows the
amount of time (in milliseconds) taken by each of the
significant phases of the AR system (Target Detection,
Binarization, Corner Detection, Homography Computation,
Camera Parameter Extraction, Stabilization, Subtraction,
Segmentation, Connected Region Search, Hand Detection,
Fingertip Location, and Augmentation). The data was
gathered by timing each phase individually on three

separate computers over a period of five minutes, and
listing the average time for each phase in the table. The
processors used by the computers were an Intel Pentium II
(450Mhz), an Intel Celeron 2 (1Ghz) and an Intel Pentium
4 (2.4Ghz). These were chosen to represent a low-end,
mid-range and high-end system respectively, at the time
this paper was written.

Computation Time on Standard Processors (ms)
P2 – 450Mhz Celeron 1Ghz P4 – 2.4Ghz

Detection 19.58 11.46 3.42

Binarization 3.66 3.18 0.57

Corner Det. 23.32 11.86 5.64

Homography 3.89 1.74 1.29

Cam. Params 0.02 0.02 0.00

Stabilization 5.86 2.74 0.98

Subtraction 0.25 0.14 0.05

Segmentation 0.03 0.03 0.01

Region 0.81 0.37 0.09

Hand Detec. 9.63 5.03 1.66

Fingertip 0.01 0.02 0.00

Augment 61.10 42.97 8.59

Table 1 - Computation Time on Standard Processors

This table highlights the areas of significant computational
complexity in the system; target detection, corner detection,
stabilization and video augmentation. It also indicates the
rapid decrease in overall computation time for as the
processor technology advances. Since these processors are
all relatively new (at most 4 years old), it can be deduced
that computer vision-based AR has the potential to become
mainstream technology.

4.1.2 Frame-rate performance

The second measure of performance is to examine the rate
at which the system produces the final augmented images.
These images are the only visual cue of the augmented
environment presented to the user, and they dictate the
immersion and usability of the system. This rendering
frame rate indicates the feasibility of this AR interaction
system as a tool using today’s computer technology.
The frame-rate of the system (in hertz) was observed in
each significant high-level phase (No AR Processing,
Target Detection, Target Tracking, Tracking and
Interaction), when run on the standard processors used in
section 4.1.1. The system was left in each phase for a
period of five minutes while the frame-rate was
continuously recorded. The average rate during each phase

is shown in Table 2. It is important to note that these
results are purposely independent of the camera capture
rate in order to isolate the processing rate. This isolation
was performed by allowing the image capture system to
update a shared buffer, which is copied and then is used by
the processing system. This means that the processing
system continuously processes the latest frame captured by
the system, even if it has already been processed. In
practice this is clearly a waste of system resources when
frames are processed faster than they are captured.
However, with the image acquisition rate isolated,
conclusions about the system performance can be drawn.

Frame Rate on Standard Processors (Hz)
P2 – 450Mhz Celeron 1Ghz P4 – 2.4Ghz

No Proc. 20.20 30.18 122.36

Detection 15.23 21.90 90.15

Tracking 11.57 18.29 63.59

Interaction 9.46 12.71 53.96

Table 2 – Frame rate on standard processors

The first observation that can be made based on the data
shown in table 2 is the real-time performance observed by
the user on the low-end and mid-range processor.
Although ten frames per second is generally an
unacceptable rate of image update for applications
requiring high mobility, those that require little user
movement can be run on lower-end systems in real-time.
This suggests the possibility for simple AR applications to
be accepted by the mainstream of computer users.
The second and most significant observation is the high
frame-rates delivered by the high-end processor. Given
that the camera hardware captures image frames at a rate of
20-30Hz, this high-end processor demonstrates the ability
to perform all AR processing in the interval between image
captures. In fact, this processor can approximately process
each frame twice before the next frame is captured. At the
time this paper was written, the fastest processor available
from Intel was the Pentium 4 (3.06Ghz). With this much
processing power, the image processing techniques used to
deliver AR in this system become insignificant relative to
the processing required to capture the images and perform
routine resource management.
It is clear from these experiments that faster processors
considerably improve the AR system. These results
confirm the feasibility of Augmented Reality as a real-time
tool for human-computer interaction in the present state of
computer technology.

5 Conclusion
In this paper, a framework for interaction with the
augmented environment was described. The application of
image stabilization was outlined to reduce the complex
problem of target occlusion in three-dimensions to the
simpler problem of overlap in two-dimensions. This
coordinate system is the same for the target, the target
occluder, and the virtual augmentation. With this
simplification, the relationship between these three key
objects in the augmented environment is well defined.
Using this stabilized coordinate system, the extraction of
target occlusion was described to compute an accurate
binary description. An overview of a hand-interaction
system was described which uses the occlusion description
as a basis for gesture recognition. A simple gesture model
was provided to simplify the gesture classification process
and to confine the actions of such gesture to those of a
common computer mouse. In order to provide the
functionality of a mouse to an instantiated dialog box, the
communication mechanism was described which translates
gesture actions into window-based events. This allows
user interaction with a virtual representation of a dialog
box to be performed on the actual dialog box, in order to
perform system-wide behavioural changes. Experimental
results were provided to demonstrate the feasibility of real-
time interaction within an AR environment. Visit our
website at http://www.cv.iit.nrc.ca/research/ar to see videos
of this work and our other projects under development.

References
[1] Ronald T. Azuma, Yohan Baillot, Reinhold Behringer,

Steven Feiner, Simon Julier, Blair MacIntyre. “Recent
Advances in Augmented Reality”. IEEE Computer
Graphics and Applications 21, 6 (Nov/Dec 2001), pp.34-
47.

[2] Thomas P. Caudell, David W. Mizell, “Augmented
Reality: An Application of Heads-Up Display Technology
to Manual Manufacturing Processes” in Proceedings of
Hawaii International Conference on Systems Sciences,
Vol II, pp.659-669. IEEE Computer Society, January
1992.

[3] A. Censi, A. Fusiello and V. Roberto. “Image
Stabilization by Features Tracking”. In "10th International
Conference on Image Analysis and Processing", 1999,
Venice, Italy.

[4] J. Crowley, F. Berard, and J. Coutaz. “Finger tracking as
an input device for augmented reality”. In Proc. Int'l
Workshop Automatic Face Gesture Recognition, pp.195-
200, 1995.

[5] Michael Grafe, Raphael Wortmann, Holger Westphal.
“AR-based interactive Exploration of a Museum Exhibit”,
IEEE First International Augmented Reality Toolkit
Workshop (ART02), Darmstadt Germany, Sept. 29, 2002.

[6] T. Heap and D. Hogg. “Towards 3D Hand Tracking
Using a Deformable Model”. Proc. Int’l Conf. Automatic
Face and Gesture Recognition, Killington, Vt., pp.140-
145, Oct. 1996.

[7] Ramesh Jain, Rangachar Kasturi, Brian G. Schunck.
“Machine Vision”. McGraw-Hill, 1995.

[8] H.Kato, M. Billinghurst, I. Poupyrev, K. Imamoto, K.
Tachibana. “Virtual Object Manipulation on a Table-Top
AR Environment”. In Proceedings of ISAR 2000, Oct 5th-
6th, 2000

[9] Shahzad Malik, Chris McDonald, Gerhard Roth. “Hand
Tracking for Interactive Pattern-based Augmented
Reality”. International Symposium on Mixed and
Augmented Reality (ISMAR'02), pp.117-126. September
30-October 01, 2002. Darmstadt, Germany.

[10] Shahzad Malik, Gerhard Roth, Chris McDonald. “Robust
Corner Tracking for Real-time Augmented Reality”. In
Proceedings of Vision Interface 2002, pp.399-406.

[11] Kenji Oka, Yoichi Sato, and Hideki Koike. “Real-time
fingertip tracking and gesture recognition”, IEEE
Computer Graphics and Applications, Vol. 22, No. 6, pp.
64-71, November/December 2002.

[12] Ioannis Pitas. “Digital Image Processing Algorithms”.
Prentice Hall, Hemel Hempstead, Hertfordshire, 1993.

[13] Bernd Schwald, Helmut Seibert, Tanja Weller. “A
Flexible Tracking Concept Applied to Medical Scenarios
Using an AR Window”. International Symposium on
Mixed and Augmented Reality (ISMAR'02), pp.261-262.
September 30-October 01, 2002. Darmstadt, Germany.

[14] G. Simon, M.-O. Berger. “Pose Estimation for Planar
Structures”. In IEEE Computer Graphics and
Applications, special issue on Tracking, pp.46-53,
November-December 2002.

[15] Emanuele Trucco, Alessandro Verri. “Introductory
Techniques for 3D Computer Vision”. Prentice-Hall,
1998.

[16] Eike J. Umlauf, Harald Piringer, Gerhard Reitmayr, Dieter
Schmalstieg. “ARLib: The Augmented Library”, IEEE
First International Augmented Reality Toolkit Workshop
(ART02), Darmstadt Germany, Sept. 29, 2002.

[17] Klaus Dorfmüller-Ulhaas, D. Schmalstieg. “Finger
Tracking for Interaction in Augmented Environments”.
Proceedings of the 2nd ACM/IEEE International
Symposium on Augmented Reality (ISAR'01), pp.55-64,
New York NY, Oct. 29-30, 2001.

[18] S. Veigl, A. Kaltenbach, F. Ledermann, G. Reitmayr, D.
Schmalstieg. “Two-Handed Direct Interaction with
ARToolKit”, IEEE First International Augmented Reality
Toolkit Workshop (ART02), Darmstadt Germany, Sept.
29, 2002.

[19] Andrew Zisserman. “Geometric Framework for Vision I:
Single View and Two-View Geometry”. Lecture Notes,
Robotics Research Group, University of Oxford.

