
Abstract
We take a common application, the PC game of solitaire,

and create an alternative input scheme using hand gestures,
in particular those that would be used if playing the game
with real cards. The alternative output scheme uses audio,
in particular voice descriptions of cards and relative hand
positions. The result is playable by anyone using any flat
surface with no actual cards and no need to touch or look
at the computer. A large class of interfaces can profit from
these ideas, and visually impaired users have expanded
access to existing systems. We focus on practical aspects of
the gesture interface, which is purely vision based, and
which has a high reliability.

1.  Introduction

Vision remains the key element of games and of most
other user interfaces - typically, one must be able tosee in
order toplay. We propose to have the computer do much of
the seeing, and the user’s hands will be an input device.
Natural interfaces are those that permit the user to commu-
nicate with software in a manner natural or traditional for
the activity being undertaken. We are connecting a natural
interface to the commonly played computer gameSolitaire,
converting it so that it can be played without actually touch-
ing the computer.

The player’s hands are be used to direct the focus in the
scene, requiring that the position of the hands be deter-
mined; the user can point to something, which can be
described in words using three dimensional computer
audio. The player’s un-instrumented hands can point to
cards and card stacks, which will be described to the player
(“Ace of spaces, third stack from the left”) by a human
voice. Changing the hand posture from open to a fist will
‘grab’ a card or stack, as would occur when the mouse but-
ton is held down in the standard game, and will permit the
user to move cards about the tableau. This amounts to a
very few logical operations that correspond to simple
mouse actions. Since the actual game of solitaire is played
with the hands, moving real cards around a table, this game
can be thought of as a middle ground between actual and
computer solitaire. However, by any standards the hand
poses and motions are gestures, and are a natural way to
manipulate real playing cards. There are a vast number of
applications that could use simple gestures to communicate
intention to the computer, if this could be made fast and

inexpensive. We feel that our system is both of these things,
needing only a basic color surveillance camera (about
$300) and a simple video grabber (about $150).

2.  Related Work

Much of the work on gesture recognition relates to sign
language interpretation by machine. The interface as envi-
sioned needs to determine the position of the hand on the
table, relative to the virtual cards and stacks, and the hand
pose or posture, that is: open or closed. It needs to keep
track of the start and end position of the gesture in those cir-
cumstances where a card is being moved.

2. 1 Gestures in HCI

Of course, HCI researchers have been interested in ges-
tures as computer input for some time. The idea that the
human hand can be used as a mouse is recent, but not
utterly new. However, most actual implementations require
some fairly sophisticated devices to make this work prop-
erly [2]. Stark [10] created a system that recognized eight
hand poses out of 24 that are claimed to be anatomically
possible. These were used, first as a 3D input device to a
visualization program, and then in a presentation system
that permits a speaker to control a computer display while
speaking, using gestures. Success rates were always less
than 93%.

Specific work on gesture and hand pose recognition is
frequently conducted by vision researchers, and focuses on
the details of the problem. Techniques for recognizing pose
vary from silhouette matching [9], slope/orientation histo-
grams [4], and template/similarity matching and table
lookup [1]. While interpretation of pose and gestures for
sign language interpretation and on video can be allowed to
consume computational resources, an application as a com-
puter interface must operate at a high rate of speed or it
becomes frustrating. Most published work does not include
performance statistics, making comparisons quite difficult.

3.  Project Overview

The first level of complexity of this project places the
tableau on a flat, approximately horizontal surface. The vir-
tual cards are dealt in a standard solitaire organization onto
this surface. The user controls the activities by moving their
hands - one gesture asks for information about the tableau,
another asks to move a card or card stack. The cards are dis-
played on a standard video display, in addition to the new
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audio display, where cards are read off to the player and
positions of the hands are described verbally.

Input of hand locations and poses is accomplished using
computer vision methods. A simple video camera is posi-
tioned above the table looking down, so that the hand is in
clear view. A frame grabber captures video of the tableau,
which is passed one frame at a time to the vision software
for interpretation.

3. 1 Playing Solitaire Without Touching the Computer

The game tableau will be a virtual one, projected hori-
zontally in front of the player onto a real surface. The sur-
face needs to be larger than needed to play a real solitaire
game - about 2x2 feet. The hand will move in front of the
cards, which will cause them to be identified, and a grab-
bing gesture will attach the virtual cards to the hand, allow-
ing the player to move cards about. Voices and effects will
guide the player across the tableau, identify cards and
stacks, and generally assist with navigation through the
game. The sound will be three dimensional, allowing voices
to appear to come from particular places in space.

A set of protocols are required if the game is to be
played without using the mouse or the usual set of window
and widget manipulations. What is required is the ability to
move cards, to deal from the deck, to deal a new hand, and
to back up a step - with no visual display, mistakes will be
inevitable. Additionally, we need display mechanisms
using audio that supplements the computer video screen
display.

Figure 1 shows the interface pattern that will be used by
our implementation. The act of moving a hand into (I.E. in
front of) one of the indicated areas will result in a response
by the game; this will be called atouch. There are also two
hand poses recognized:hand open andhand closed. Each
pose can be used to ask for a different response.

A hand open pose is a request for information. When-
ever a face-up card is touched by an open hand, the card is
displayed for the user - display is verbal, so the nature of
the card is read out in words. The position of the hand is
also described verbally, so that the user can orient them-
selves quickly when starting a game, and when returning to
an interrupted game.

A closed hand pose is a request for action. Closing the
hand over the deck results in a card being dealt. Closing the
hand over a card in the stacks results in that card being
grabbed, or attached to the hand so it can be moved. When
the hand is opened the card is released - this is like holding
down the mouse button when the cursor is over a card,
when playing the standard computer solitaire game. Of
course, if the card grabbed is not on the bottom of a stack,
then it and all cards below it will be moved together.

The regions labelled ‘A’, ‘B’, ‘C’, and ‘D’ are used for
non-play control of the game. It would be very easy to
touch one of these regions by mistake, so touching twice is
required to activate a control. Touching ‘A’ results in a the
previous move being undone, and the game returned to the
previous state. Touching ‘B’ results in a new game being
dealt. Touching ‘D’ results in the game program being ter-
minated. The ‘C’ region is currently unused.

An alternative to using physical regions for game control
would be to use different hand poses for each request. This
would be more difficult to implement, and possibly harder
for the player to remember and enact, but there is no reason
it would not work. We decided to go with the simpler and
more robust approach, at least at first.

3. 2 Vision for Input - Practical Issues

The input system consists of two main parts: detection
of the hand, and recognition of the hand gesture[6,8]. For
the purposes of these goals, the input stream is viewed on a
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Figure 1:Virtual playing area showing stacks and the special areas for
communication.



frame-by-frame basis with limited tracking between
frames. The first part, hand detection, can be further bro-
ken down into background subtraction and skin detec-
tion. The background subtraction allows us to limit the
search area, while the skin detector returns a fairly accu-
rate binary representation of hand pixels within that
search area.

The gesture recognizer must determine, based on the
binary representation of the hand returned from the skin
detector, whether the hand is in one of two distinct pos-
tures, specifically an open hand (fingers together) and a
closed fist. Three separate measures are used to deter-
mine the hand posture, each using a nearest-neighbor
approach followed by a majority-rules voting procedure
between the three metrics.

3. 3 Background subtraction

A simple background subtraction is used to effi-
ciently remove a large portion of the input image that
obviously does not contain the hand. A copy of the
background is stored when the program first starts, and
is converted to the YCrCb color space. For each pixel in
the current frame the Euclidean distance between the Cr
and Cb values of the current frame and the stored back-
ground image is computed, and pixels having a distance
greater than a threshold value of 0.05 are assumed to be
background pixels and are removed from the image; this
threshold was determined through experiment, and
works on a range of backgrounds.

3. 4 Skin detection

To locate the hand, three separate skin tone detection
algorithms are used over two color spaces. YCrCb and
HSV are chosen because they have relatively compact
skin tone ranges and they have good separation of lumi-
nance and chrominance [11]. Skin tone detectors are
lenient to scale, orientation, and occlusions, but have a
major disadvantage in that they could fail under poor
illumination and brightness conditions [5]. To help min-
imize the problem, the incoming RGB image is trans-
lated into YCrCb and HSV [23] color spaces, both of
which allow for invariance to luminance by considering
it apart from the chrominance information. Separating
the luminance information from an RGB image is not
entirely accurate, and extreme lighting conditions will
still affect the accuracy of the skin detection algorithms
[8]. The hue component in our HSV space was calcu-
lated so that it is both brightness and gamma invariant
[4].

After background subtraction is complete a majority
of the frame has already been removed and a rectangular
bounding box can effectively define the range of skin
tones. A large number of skin tone samples were taken
and produced two independent skin tone ranges:

HSV:

YCrCb:

To further aid in distinguishing between skin-toned
and non skin-toned pixels which are under poor lighting
conditions, a distance measure is computed between the
color of a given pixel in YCrCb color space and the
mean skin color, defined as:

For any pixel P(x,y), the Euclidean distance between
it and the mean defined in the two equations above is
calculated as:

A successful heuristic is: the lowest 10% of these dis-
tances are also defined to be skin pixels. Thus for any
given image, a pixel P(x,y) is defined as skin toned if:

P is in the lowest 10% of distances as defined above

OR

P is in the valid Hue/Saturation range

AND

P is in the valid Cr/Cb range

The skin detector above returns a binary image where
each pixel is either skin-tone or not. Background, espe-
cially wood and other such objects, usually has sparse
skin toned pixels where real skin regions are denser.
Thus all pixels without enough skin-toned neighbors are
removed. The binary image is then morphologically
opened [17] to separate different objects, followed by a
fill routine to close areas that are completely surrounded
by skin pixels. Regions are then connected, and ones
that aren’t considered large enough are removed from
further consideration.

The best way to approach hand gesture recognition is
to not have the forearm present. This, however, would
not be user friendly and would also require a special
marker to identify the wrist. Removing this special
requirement allows a player to be wearing either a long-
or short-sleeved shirt, and so the actual absence or pres-
ence of the forearm cannot be assumed. If the forearm is
present, it will extend past the image boundaries and
result in drastic changes to the shape and size of the
hand. Hence, for gesture recognition of the hand, the
forearm must be removed prior to recognition.

In order to remove the forearm from the hand the
location and size of the palm is found, and its intersec-
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tion with the forearm becomes the wrist location. A line
approximately perpendicular to the forearm defines
which pixels are to be removed.

To find the palm a distance transform is computed
over the binary image acquired from the skin tone selec-
tor [3]. For each pixel P(x,y) the Euclidean distance
ED(x,y) is estimated between it and the nearest non-skin
pixel. The distance transform used is a modified version
of the two pass fast transform [17], but with the addition
of diagonal distances. This provides more accurate
results, while still being in linear complexity relative to
the number of pixels in the image.

The palm center is the largest value in the distance
transform, with a possible exception of the upper part of
the forearm, and will define the radius of a circle encom-
passing the palm. To find the wrist it is necessary to find
the direction from the center of the palm to the center of
the wrist and intersect the palm circle with that point [3].
If the hand is not upside down, we can assume that the
wrist will be vertically below the palm. Figure 2 shows
how this is done using an image from the working sys-
tem.

Since the angle from the center of the hand to the
wrist is unknown, and can vary anywhere between 0 and
180 degrees below the palm, all points are checked. The
palm circle is extended 1.5, 1.7, and 2.0 times to find
potential locations for the wrist.

The number of skin-toned pixels along lines tangent
to the circle are calculated in 2 degree arcs along the
lower half of each circle; the maximum is assumed as
the line intersecting the wrist. The direction between the
center of the palm and the center of the wrist is stored
for each circle and the two closest angles (defined by
absolute difference) are averaged, and the resulting
angle is assumed to point towards the center of the wrist.
The three different circle sizes are used to avoid situa-
tions where the wrist is covered by a watch, bracelet, or
some other occlusion.

The line determined above is then followed from the
center of the palm to 1.1 times the radius of the palm
circle, and a tangent to the circle at that point is calcu-
lated. All pixels beyond the tangent are assumed to rep-
resent the forearm and are removed.

3. 5 Hand gesture recognition

After passing through the background subtraction
and skin-tone detection routines, it is assumed that only
the hand and possibly one or more unconnected forearm
regions will be present in the resulting binary image. It
is also assumed that the hand is vertically above the
forearm, and thus the uppermost region is selected as the
hand.

Gesture recognition is composed of the three signa-
tures described below. Each signature has five pre-calcu-
lated centroids, referred to as reference vectors, for both
the open and closed positions. To classify the gesture of
the current hand, a feature vector is computed for each
of the signatures. A mean squared error measure is cal-
culated between these feature vectors F and each of their
associated reference vectors Ri:

A nearest neighbor approach is used to determine the
closest match. Each feature vector votes either open or
closed and the class with the most votes wins. If the dis-
tances between the feature vector and the reference vec-
tors are too large, the object is not considered a hand and
is ignored. If no hand has been successfully found the
previous location and state are assumed.

Assuming a hand gesture is recognized, the location
of the hand “hot spot” on the screen is calculated differ-
ently depending on whether it is open or closed:

(x,y) = (Center of mass + Center of palm circle +
 Center of bounding box)/3

For open hands, the (x,y) location of the hand is
adjusted by moving it 10% of the distance between the
center of the wrist and the center of the palm.   Simi-
larly, for closed hands the (x,y) location is moved 80%
of the same distance. This adjustment helps to compen-
sate for the change in dimensions between an open hand
and a closed hand, which affects the center of mass and
center of bounding box calculations. The 10% and 80%
values were chosen because they place the hot spot in a
fairly consistent location relative to the wrist.

However, due to noise, the hot spot can jump by
small amounts every frame, even when the hand is phys-
ically stationary. A simple tracking method is used to
help avoid this jumpiness which makes it easier to hold
your hand over a small card. If the Euclidean distance
between the current location of the hot spot and the last
4 hot spot locations is greater than 10 pixels, it is
assumed to be in the new location. If the distance is less
then 10 pixels, then the current location is averaged with
the last 4 locations and the result is considered the new
location of the hand.   This enables the hand to move
large distances quite easily, but still allows stability of
the hand while hovering over small objects.

3. 6 Signatures

The wrist ray feature vector F is computed by pro-
jecting rays in a 360-degree arc from the calculated cen-
ter of the wrist [10]. Each ray contains the Euclidean
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distance from the center of the wrist to the last object pixel,
in evenly spaced 4-degree arcs, giving a total of 90 rays:

for 0<θ<=90 degrees. Having 90 rays provides a good
set of data, while not being too expensive to calculate.
Fewer rays would cause too many false positives, while too
many rays will be overly restrictive and cause too many
false negatives. Each distance is divided by the diameter of
the palm circle, which has the effect of representing the
width/height ratio of a human hand. It is useful to know that
the hand has approximately the right proportions, which
should be relatively consistent across all human hands.

To account for the rotation of the hand the feature vector
is rotated around a 360- degree arc. The nearest correlation,
Ci, for each of the reference vectors is selected as the mini-
mum mean squared error: A nearest-neighbor approach is
used on the resulting Ci values to classify the hand gesture
as either open or closed.

This center ray feature vector is similar to the wrist rays
but the origin point of the rays is at the center of the palm
circle, instead of the wrist [10]. This has the same effect as
representing the width/height ratio, which produces good
separation between open and closed hands. While the same
approach is used for the two signatures, it is often the case
where one will correctly characterize the hand even when
the other fails.

The hand circle feature vector is a ratio of the number
of skin pixels to the total number of pixels within concen-
tric circles[10]. The innermost circle is the palm circle, and
always has a value of one. The remaining circles have radii
of:

where W is the radius of the palm circle.

Circles are rotation-invariant and these values do not
require any correlation to match the reference vectors. Thus
a single mean squared error measure is computed directly
between the feature vector and each reference vector
instead of minimizing a set of correlations as was done for
the wrist and center rays measures. Again, a nearest-neigh-
bor approach is taken to classify the gesture.

Because each of the three signatures may fail under vari-
ous conditions, and often do not fail simultaneously, a
majority-rules approach is taken. The classification
assigned to the gesture by each of the three methods is con-
sidered to be a “vote”, and the class (either open or closed)
with the most votes is considered correct [7]. To assist in
minimizing small errors due to noise, which may cause an
incorrect vote by more than one method, a bias is used to
give precedence to the previous gesture.

4.  System Evaluation and Conclusion

Although the vision input system is quite reliable, it
could possibly fail in a number of places. First, the skin
tone could be mis-classified, resulting in errors in later pro-
cessing and culminating in an inaccurate hand location or
pose. Figure 3 shows what happens in this case. It should be
mentioned that the failure rate is so low that a reliable fail-
ure rate could not be determined.

Forearm removal is considered successful when it sepa-
rates the hand from the forearm consistently across differ-
ent hands and rotations. It doesn’t necessarily require that
the forearm be removed exactly at the wrist location, but
only that it is relatively consistent. Conversely, failure is
defined as when considerably more or less of the forearm is
removed than expected.

When the forearm removal fails, it is usually caused by
an incorrect location and width of the palm circle. If the
binary image returned from the skin selector is ‘wrong’ it
will cause the highest distance in the distance transform to
no longer be the center of the palm. Since this distance
defines both the location and width of the palm circle, and
therefore the location of the tangent vector that is used to
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Figure 2:Steps in the processing of a hand image. (Far left) Input images of open and closed hands, as
captured by the system. (Near left) The same two images after background removal and skin segmentation.
(Near right) Open hand showing distance transform and wrist/forearm detection. (Far right) Closed hand
showing distance transform and wrist/forearm detection.



cut the forearm, an error will cause the whole forearm
removal process to fail, as seen in Figure 3.

With a failure in the forearm removal, both the location
of the center of the hand and the location of the wrist will
not be accurate. Since these locations are used in all 3 rec-
ognition signatures, the hand will usually not recognize
properly. In particular, there were three methods used to
identify the hand area after forearm removal; the rates of
success are:

After the majority vote of the three methods has been
completed, the overall success rates are:

This shows that using the vote does result in an increase
in success, and that the overall error rate is low - less than
2.5%. The overall system operates at a sufficiently high
speed to be practical, about 15 frames per second.

4. 1 Evaluation by Student Volunteer Subjects

An evaluation by volunteer subjects has been performed,
but the results are not quantifiable. The overall response is
that the players are fascinated by the ability to play the
game without computer contact, and like the fact that the
hand can ‘grab’ a card in a natural motion. Use of 3D sound

was considered a plus, and the error messages were consid-
ered to be very good, even by experts. Playing the game
was generally an enjoyable experience, and most of the
players see obvious uses of this technology to other inter-
faces.

Finally, there were one or two comments that the inter-
face was ‘jerky’, that the system could not quite process
enough frames per second. The computer is a 1.4 GHz PC,
and performance will almost certainly be adequate if a 2.0
GHz machine were used. This system did appear to be
faster than the others appearing in the literature.
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