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Abstract 

This paper presents a fast and accurate algorithm for 
extracting lines and circular arcs from digital images.  
Conventional line and circle extraction algorithms first 
extract the edge pixels and then connect these edge pixels 
into lines or circles.  In contrast the proposed algorithm 
extracts the lines and circular arcs directly from the input 
image by tracing the perimeter of an intensity region and 
then using simple linear regression to compute the equa-
tions of the lines and arcs.  This proposed method allows 
the algorithm to use the intensity information in the image 
to correlate the edge pixels, thus simplifying the computa-
tion of the lines and arcs and increasing the robustness in 
the presence of noise.  Experiments were performed on a 
variety of synthetic and natural images (256 × 256 gray-
scale) to demonstrate that the algorithm can extract lines 
with high accuracy, while realizing an average computa-
tion time of 0.0058 seconds using a 1.4 GHz Athlon proc-
essor. 

1 Introduction 

The extraction of lines and circles from digital images is 
one of the fundamental problems in the field of digital 
image processing and pattern recognition [1], [2].  Even 
though this problem has been studied for many years and 
many different algorithms have been proposed, there is 
still a need for reliable, high-speed line and circle extrac-
tion algorithms for real-time, real-world applications.  
Another problem is that most of the research has concen-
trated on the extraction of lines as this is much simpler 
than the extraction of circles.  The reason is that lines 
have only two degrees of freedom whereas circles contain 
three degrees of freedom and are therefore much more 
complex.  Furthermore, there are no algorithms that can 
extract both lines and circles simultaneously. 

 Some of the well-known line extraction algorithms 
are the Hough transform [1], [2], [3] and its derivatives 
[4], [5], [6], [7], chain coding [8], polygonal approxima-
tion [9], and other algorithms [1], [2], [10], [11].  The 
Hough transform, which is one of the best-known line 
extraction algorithms, uses a histogram in order to com-
pensate for the lack of correlation between the extracted 
edge pixels.  This is very time consuming as every edge 
pixel influences every other edge pixel.  Many papers 
have been written on improving the speed of the Hough 
transform.  However, even with these improvements, 
many speed and accuracy problems still remain. 
 There are also several different approaches for the 
extraction of circles from digital images [12], [13], [14], 
[15], [16].  However, most of these algorithms are very 
slow and cannot be easily used in real-time applications.  
Most of the current algorithms extend the Hough trans-
form line detection algorithm to the detection of circles.  
The Hough transform detects lines by transforming the 
input image into a two-dimensional histogram which 
corresponds to the two degrees of freedom present in the 
equation of a straight line.  Thus when this principle is 
extended to the detection of circles, a three-dimensional 
histogram is required.  This extra dimension greatly 
increases the computation time of the algorithm.  To 
overcome this limitation, various approaches have been 
suggested, such as using the gradient information to im-
prove the detection of the center of the circle.  However, 
even these faster algorithms require a significant amount 
of time to extract circles from simple images. 
 The fundamental difference between the proposed 
algorithm and these other algorithms is that the proposed 
algorithm processes the original intensity image directly, 
whereas the other algorithms use at least one pre-
processing step to locate the edge pixels.  This pre-
processing step is used to reduce the effects of blurred 
edge transitions and other sources of noise, which are 
common in natural images.  However there are three 
serious problems with pre-processing that reduce the ef-
fectiveness of the subsequent line or circle extraction 
algorithms.  The first problem is that the edge pixels are 
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usually correlated in the intensity image in that they form 
the boundary between two relatively uniform intensity 
regions, and this correlation is removed by pre-processing.  
The second problem is that pre-processing consumes a 
significant amount of processing time, especially if the 
image is complex and extraneous edge pixels need to be 
removed.  The third problem is that the edge pixel ex-
traction is usually performed by a high-pass spatial filter 
and is therefore sensitive to high-frequency noise. 
 Another fundamental difference between the pro-
posed algorithm and the traditional algorithms is that the 
proposed algorithm extracts both lines and circular arcs 
simultaneously.  This is cannot be done by the traditional 
methods as the histograms for extracting lines are com-
puted differently than the histograms used for extracting 
circles.  However, images from real-world applications 
usually contain both lines and arcs, thus it is advantageous 
to be able to extract both types of features at the same 
time. 
 In this paper an accurate, high-speed extraction algo-
rithm that simultaneously extracts both lines and circular 
arcs directly from the intensity image is presented.  By 
using the correlation provided by the intensity information 
in the image, simple linear regression can be used to ex-
tract the lines and circular arcs, thus greatly reducing the 
computation cost of the extraction process.  The pro-
posed algorithm has a variety of practical applications due 
to its high computation speed.  Some of these applica-
tions are driver assistance, autonomous robots, high-speed 
character recognition, pattern recognition, face recogni-
tion, aerial image classification, security systems, and 
automatic quality control. 
 In the following section the proposed algorithm is 
explained.  The basic principle of the algorithm is to 
combine the edge pixel extraction and the feature extrac-
tion into a single step.  To do this any edge operator may 
be used to locate and follow the boundary of an intensity 
region.  Then the features of the lines and circular arcs 
that form the boundary are calculated using simple linear 
regression.  In the third section experiments are per-
formed using a variety of synthetic and natural images to 
verify the speed and accuracy of the proposed algorithm.  
Finally the paper is concluded in the fourth section. 

2 The Algorithm 

2.1 The Definition of a Line and a Circle 
Almost all of the conventional line and circle extraction 
algorithms first generate a binary edge image by pre-
processing the original intensity image with an edge ex-
traction operator.  Then the features of the line or circle 
are calculated using the binary edge image.  As a result 
of this pre-processing the definition of a line becomes, “a 

collection of edge pixels that satisfy the equation of a 
straight line, y = m⋅x + b.”  Where x and y are the coordi-
nates of the edge pixel, m is the slope and b the intercept 
of the line.  In a similar manner, the definition of a circle 
becomes, “a collection of edge pixels that satisfy the equa-
tion, (x − X0)2 + (y − Y0)2 = R2.”  Where R is the radius of 
the circle, and X0 and Y0 are the coordinates of the origin 
of the circle.  However an alternative definition of a line 
is, “the straight line segments that form the border be-
tween two regions of different intensity within an image,” 
and the corresponding definition of a circle is, “the circu-
lar arc segments that form the border between two regions 
of different intensity within an image.”  These new defi-
nitions for lines and circles lead directly to a new extrac-
tion algorithm with the following steps: 

(1) Locate a region of uniform intensity. 
(2) Trace the perimeter of the region and record the 

coordinates of the pixels. 
(3) Form lines or circular arcs from this set of cor-

related pixel coordinates. 
(4) Repeat steps 1 through 3 for the remaining re-

gions of uniform intensity. 
 Step (1) is similar to the pre-processing used by the 
conventional algorithms and step (3) is similar to the con-
ventional extraction algorithms.  The difference is that 
the conventional algorithms perform these steps individu-
ally in series, while the proposed algorithm performs them 
in parallel.  Steps (1), (2), and (3) in the proposed algo-
rithm correspond to the scanning, perimeter tracing, and 
feature extraction modes, respectively, and are described 
below. 

2.2 The Scanning Mode 
The scanning mode begins at the bottom, left corner of the 
image, (0, 0), and scans from left to right and bottom to 
top looking for a significant transition in image intensity 
that would indicate the presence of a new intensity region.  
Once such an intensity transition has been detected the 
scanning mode will call the perimeter tracing mode to 
extract the pixels that correspond to the border of the 
intensity region.  However, if this pixel has already been 
determined to belong to a line or circular arc the scanning 
mode will advance to the next pixel without calling the 
perimeter tracing mode.  This prevents the same line or 
circle from being extracted multiple times. 
 Any of the conventional edge operators may be used 
in this mode to detect an intensity transition.  In this 
paper the following equations were used to determine if 
the pixel at (x, y) is the start of a new intensity region: 
 TII yxyx >− + ,1,  (1) 

 TII yxyx >− +1,,  (2) 

Where Ix,y is the intensity of the pixel at (x, y) and T is the 
threshold.  This threshold level was determined by ex-
perimentation and set at a value of 40 for 8-bit grayscale 
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images and was not changed for all the experiments.  If 
either equation (1) or (2) is true then a new intensity re-
gion has been located and the perimeter tracing mode 
described in the next section is used to trace the perimeter 
of the intensity region. 

2.3 The Perimeter Tracing Mode 
When the value of the scanning mode exceeds a certain 
threshold the border of an intensity region has been lo-
cated and the algorithm begins the perimeter tracing 
mode.  The tracing mode assumes that a pixel with an 
intensity within the range of the starting pixel plus or 
minus the threshold is “inside” of the intensity region and 
if the intensity is outside this range then the pixel is as-
sumed to be “outside” of the intensity region. 
 To follow the perimeter of the intensity region the 
tracing mode must be able to move to each of the eight 
neighboring pixels, thus eight separate tracing functions 
are required.  In each of the tracing functions at least one 
of the four cardinal pixels must be outside of the intensity 
region.  From this outside pixel the tracing function will 
search for the nearest pixel inside the region by using the 
tracing functions shown in Fig. 1. 

 
Figure 1: Perimeter tracing functions.  In this figure, the 
numbers show the searching order, the letters show the 
tracing function called, the black squares show the pixels 
that must be outside of the intensity region and the arrows 
show the direction the tracing mode has moved since the 
previous iteration. 
 To understand Fig. 1, the tracing function shown in 
Fig. 1(a) will be described in detail.  In this figure, the 
tracing mode has just moved from the bottom right pixel 
to the center pixel as shown by the arrow.  Since the 
bottom center pixel is known to be outside of the intensity 
region the tracing function searches the cardinal pixels in 
a clockwise manner from this pixel, looking for a pixel 
that is inside the region.  The reason the cardinal pixels 

are given preference over the diagonal pixels is that they 
represent definite boundaries whereas the diagonal pixels 
may be noise.  If one of the cardinal pixels is inside of 
the intensity region, its counter-clockwise diagonal pixel 
will also be tested, for example if the middle left pixel is 
found to be inside the region then the bottom left pixel 
will also be tested.  Once the intensity transition has been 
located the tracing function will call the function labeled 
in the box.  For example if the bottom left pixel is deter-
mined to be the boundary pixel then tracing function (f) 
will be called.  Then the pixel will be marked as belong-
ing to a line or a circle and its coordinates will be recorded 
in a list for the line feature extraction mode.  It should be 
noted that the perimeter tracing mode is allowed to back-
track on itself so that it can escape from possible traps.  
It can be seen that these functions form a recursive algo-
rithm that can move counterclockwise around the intensity 
region.  The tracing mode ends when it arrives back at 
the starting point or at the edge of the image.  Once a 
terminal condition occurs the perimeter tracing mode will 
end and the feature extraction mode will begin. 

2.4 The Feature Extraction Mode 
The feature extraction mode begins at the start of the list 
of pixel coordinates extracted by the perimeter tracing 
mode and uses simple linear regression [17] to compute 
the equations of the line segments and circular arcs.  This 
mode uses the mean-square error (MSE) from the actual 
pixel to the calculated line or circular arc to control which 
pixels belong to the curve.  First, the feature extraction 
mode assumes the pixels belong to a line segment, how-
ever if the MSE exceeds the MSE threshold then the mode 
will try to fit the pixels to a circular arc. 
 To calculate the MSE of the best-fit line for the first 
N pixels in the list the following equations are used: 

 ∑ ∑
= =









−=

N

i

N

i
iixx x

N
xS

1

2

1

2 1
 (3) 

 ∑ ∑
= =









−=

N

i

N

i
iiyy y

N
yS

1

2

1

2 1
 (4) 

 ∑ ∑∑
= ==

−=
N

i

N

i
i

N

i
iiixy yx

N
yxS

1 11

1
 (5) 

 If |Sxx| > |Syy| then the slope, m, and the intercept, b, 
of the best-fit line, y = m⋅x + b, and the error sum of 
squares (SSE) are given by Equations (6) to (9), otherwise 
the complementary equations which replace Sxx with Syy 
and xi with yi are used. 
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 xyyy SmSSSE ⋅−=  (8) 

 
N

SSEMSE =  (9) 

 If the MSE for the line segment is greater than the 
MSE threshold, the least squares circle fitting algorithm 
given by the following equations is used to calculate the 
best-fit circle parameters. 
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Since a circle is a quadratic equation the MSE must be 
calculated by the following equation: 
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 If the MSE is greater than a pre-determined threshold 
for the given line segment or circular arc then the feature 
extraction mode will start a new extraction from this pixel.  
This procedure is continued until all the pixels in the list 
have been processed, and then the feature extraction mode 
will return to the scanning mode.  The extracted line 
segments and circular arcs are stored in a list and can be 
used directly or further analyzed as required by the appli-
cation. 

3 Experiments 

In order to demonstrate the high speed and accuracy of the 
proposed extraction algorithm, two experiments were 
performed.  In the first experiment a synthetic image of a 

snowman was used to test the robustness of the algorithm.  
In the second experiment several synthetic and real world 
image were used to demonstrate the speed of the proposed 
algorithm.  Both experiments were performed on a 1.4 
GHz Athlon processor, and all test images were 256 × 256 
grayscale images. 

3.1 Robustness Experiment 

  
 (a) (b) 
 
 

 
(c) 

Figure 2: Noiseless snowman experiment. (a) original 
snowman image; (b) true edge pixels; (c) extracted line 
segments and circular arcs. 
 
To test the robustness of the line segment and circular arc 
extraction, the synthetic image of a snowman shown in 
Fig. 2(a) was used.  Since the algorithm extracts lines 
and circles on both sides of the intensity transition, the 
algorithm will extract two lines or circles for each side of 
the intensity region.  Therefore, to test the accuracy of 
the extraction algorithm the true edge pixels shown in Fig. 
2(b) were used.  The results of the extraction algorithm 
are shown in Fig. 2(c) and are summarized in Table 1, 
column 1, by recording the number of lines, the number of 
circles, the strict accuracy and the ±1 accuracy.  The 
strict accuracy is the percentage of pixels that are exactly 
the same as those shown in Fig. 2(b) and includes both 
types of errors due to missing pixels and falsely classified 
pixels.  Therefore it is possible to have a negative accu-
racy if there are more false pixels than correctly classified 
pixels.  The ±1 accuracy is a more lenient accuracy in 
that it allows a pixel to fall within a radius of one pixel 
from the exact pixel.  From the results shown in Table 1, 
column 1, it can be seen that the algorithm extracts the 
lines and circular arcs with very high accuracy. 
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 (a) (b) 
 

  
 
 (c) (d) 
Figure 3: Corrupted snowman experiment. (a) test image 
mildly corrupted with Gaussian noise (mean = 0, variance 
= 100) and with salt and pepper noise (probability = 
5%); (b) extraction results; (c) test image heavily cor-
rupted with Gaussian noise (mean = 0, variance = 200) 
and with salt and pepper noise (probability = 10%); (d) 
extraction results. 
 
 Table 1: Accuracy Results. 
 Fig. 2(a) Fig. 3(a) Fig. 3(c)
Lines 23 28 57 
Circles 24 25 36 
Strict Accuracy (%) 91.37 80.78 52.8 
±1 Accuracy (%) 99.96 99.73 88.83 
 
 To show that the algorithm is robust in the presence 
of noise the original image shown in Fig. 2(a) was cor-
rupted with additive Gaussian noise (mean = 0, variance = 
100, 200) and additive salt and pepper noise (probability = 
5, 10%) [18].  The first image shown in Fig. 3(a) was 
mildly corrupted with Gaussian noise (mean = 0, variance 
= 100) and with salt and pepper noise (probability = 5%) 
and the second image was heavily corrupted with Gaus-
sian noise (mean = 0, variance = 200) and with salt and 
pepper noise (probability = 10%).  The resulting images, 
extracted with the same parameters as was used in the 
noiseless case, are shown in Figs. 3(b) and (c), respec-
tively.  The strict accuracy and the ±1 accuracy were 
calculated by using the true edge pixels shown in Fig. 
2(b).  From these images and the results shown in Table 
1, columns 2 and 3, it can be seen that the proposed algo-
rithm retains high accuracy with low levels of noise and is 

still robust in extracting lines and circular arcs from 
highly corrupted images. 
 

3.2 Speed Experiment 

  
 (a) (b) 

  
 (c) (d) 

  
 (e) (f) 

  
 (g) (h) 
Figure 4: Computational speed experiment. (a) blueprint; 
(b) results; (c) chain image; (d) results; (e) circuit board; 
(f) results; (g) structure image; (h) results. 
 
To demonstrate the speed of the proposed algorithm sev-
eral real-world and synthetic images were tested.  These 
images are shown in Fig. 4 and consist of a blueprint, a 
chain, a circuit board, and a structure.  The parameters of 
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the algorithm were the same as those used in the previous 
experiment.  All experiments were performed on a 1.4 
GHz Athlon processor, and all test images were 256 × 256 
grayscale images.  The computation times for the images 
shown in Figs. 2, 3, and 4 are recorded in Table 2, column 
3.  From Table 2 it can be seen that the proposed algo-
rithm has an average processing time of 0.0058 seconds 
for 256 × 256 grayscale images, thus verifying the speed 
of the algorithm. 
 

Table 2: Computation Time. 
 Lines Circles Time (s) 
Fig. 2(a) 23 24 0.00358 
Fig. 3(a) 28 25 0.00543 
Fig. 3(c) 57 36 0.00796 
Fig. 4(a) 413 185 0.00849 
Fig. 4(c) 63 64 0.00470 
Fig. 4(e) 91 146 0.00543 
Fig. 4(g) 96 43 0.00471 
Average 110 75 0.0058 
 

3.3 Standard Hough Transform Comparison 
 In order to compare the speed and accuracy of the 
proposed algorithm with the conventional approaches, the 
standard Hough transform for lines was modified for cir-
cles (SHTC).  Thus the two dimensional histogram used 
for lines was expanded to a three dimensional histogram.  
The three dimensions are the x and y coordinates of the 
origin and range from 0 to the size of the input image, and 
the radius which can range from 3 pixels to twice the size 
of the image.  To convert the input image into the edge 
image needed for the SHTC, the Sobel operator was used, 
but this computation cost is not recorded in the results.  
The same experiments presented in Sections 3.1 and 3.2 
were repeated using the SHTC and the results are shown 
in Fig. 5 and are summarized in Table 3.  In Table 3, 
Columns 2 and 3, there are negative accuracies.  This 
results from having more false circles than true circles, as 
can be seen in Fig. 5(d).  As can be seen from the results 
the SHTC is only designed to extract the circles and the 
standard Hough transform for lines would have to be used 
on the unclassified edge pixels to extract the lines thus 
increasing the extraction time. 
 

Table 3: SHTC Experimental Results. 
 Strict Acc. (%) ±1 Acc.(%) Time (s) 
Fig. 2(a) 41.55 87.37 57.42 
Fig. 3(a) 21.60 57.54 2980.48 
Fig. 3(c) -79.77 -42.10 4987.21 
Fig. 4(a) N.A. N.A. 413.62 
Fig. 4(c) N.A. N.A. 136.63 
Fig. 4(e) N.A. N.A. 225.77 
Fig. 4(g) N.A. N.A. 202.21 
Average -5.54 34.27 1286.19 

  
 (a) (b) 

  
 (c) (d) 

  
 (e) (f) 

  
 (g) (h) 
Figure 5: SHTC experiments. (a) results of the Sobel op-
erator for Fig. 2(a); (b) extraction results for Fig. 2(a); 
(c) extraction results for Fig. 3(a); (d) extraction results 
for Fig. 3(c); (e) extraction results for Fig. 4(a); (f) ex-
traction results for Fig. 4(c); (g) extraction results for 
Fig. 4(e); (h) extraction results for Fig. 4(g). 
 
 If the results shown in Table 3 are compared with 
those shown in Tables 1 and 2, it can be seen that the 
proposed algorithm is more that 200,000 times faster than 
the SHTC while realizing a nine fold reduction in error. 
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3.4 Modified SHTC Comparison 
 The SHTC is one of the most accurate of the tradi-
tional approaches to circle extraction, however it is also 
one of the slowest approaches due to its three dimensional 
histogram.  In order to improve the speed of circle ex-
traction several modified approaches have been proposed 
that reduce the size of the histogram to two dimensions by 
exploiting the geometrical properties of circles.  In order 
to compare the speed of the proposed algorithm with these 
modified SHTC algorithms, the voting time required for 
two of these modified methods was used.  These two 
methods are the Davies method [19] and the Tsuji method 
[20].  The time required for voting only was calculated 
for the same 256 × 256 grayscale images and the same 1.4 
GHz. Athlon processor was used as in the previous ex-
periments.  Only the voting time was calculated and not 
the entire circle extraction process, therefore no accuracy 
calculations are possible.  The voting computation time 
for both of these methods is recorded in Table 4. 
 

Table 4: Modified SHTC Voting Time 
 Davies Method 

Voting Time (s) 
Tsuji Method 

Voting Time (s) 
Fig. 2(a) 0.19 172.42 
Fig. 3(a) 12.52 1509.07 
Fig. 3(c) 24.17 2626.45 
Fig. 4(a) 18.53 1682.45 
Fig. 4(c) 2.53 502.81 
Fig. 4(e) 2.84 859.45 
Fig. 4(g) 5.34 674.11 
Average 9.44 1146.68 
 
 By contrasting the results shown in Table 4 with 
those shown in Table 2 it can be seen that the proposed 
algorithm is more than 1600 times faster than the voting 
time of the Davies method and 197000 times faster than 
the voting time of the Tsuji method.  These results dem-
onstrate the efficiency of the proposed method. 

4 Conclusion 

This paper has presented an algorithm that can extract 
lines and circles simultaneously from the original intensity 
image.  Experiments have shown that the algorithm is 
robust in the presence of noise and can extract lines and 
circles with an average ±1 accuracy of more than 90%, 
even from heavily corrupted images.  The algorithm is 
very fast with an average processing time of 0.0058 sec-
onds using a 1.4 GHz Athlon processor and 256 × 256 
grayscale images. 
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