
 1

An Algorithm for Extracting Lines and Circles with
High-Speed and Accuracy

John W. Gates, Miki Haseyama, Hideo Kitajima

School of Engineering, Hokkaido University
N-13, W-8, Kita-ku, Sapporo 060-0826, Japan

john@media.eng.hokudai.ac.jp

Abstract

This paper presents a fast and accurate algorithm for
extracting lines and circular arcs from digital images.
Conventional line and circle extraction algorithms first
extract the edge pixels and then connect these edge pixels
into lines or circles. In contrast the proposed algorithm
extracts the lines and circular arcs directly from the input
image by tracing the perimeter of an intensity region and
then using simple linear regression to compute the equa-
tions of the lines and arcs. This proposed method allows
the algorithm to use the intensity information in the image
to correlate the edge pixels, thus simplifying the computa-
tion of the lines and arcs and increasing the robustness in
the presence of noise. Experiments were performed on a
variety of synthetic and natural images (256 × 256 gray-
scale) to demonstrate that the algorithm can extract lines
with high accuracy, while realizing an average computa-
tion time of 0.0058 seconds using a 1.4 GHz Athlon proc-
essor.

1 Introduction

The extraction of lines and circles from digital images is
one of the fundamental problems in the field of digital
image processing and pattern recognition [1], [2]. Even
though this problem has been studied for many years and
many different algorithms have been proposed, there is
still a need for reliable, high-speed line and circle extrac-
tion algorithms for real-time, real-world applications.
Another problem is that most of the research has concen-
trated on the extraction of lines as this is much simpler
than the extraction of circles. The reason is that lines
have only two degrees of freedom whereas circles contain
three degrees of freedom and are therefore much more
complex. Furthermore, there are no algorithms that can
extract both lines and circles simultaneously.

 Some of the well-known line extraction algorithms
are the Hough transform [1], [2], [3] and its derivatives
[4], [5], [6], [7], chain coding [8], polygonal approxima-
tion [9], and other algorithms [1], [2], [10], [11]. The
Hough transform, which is one of the best-known line
extraction algorithms, uses a histogram in order to com-
pensate for the lack of correlation between the extracted
edge pixels. This is very time consuming as every edge
pixel influences every other edge pixel. Many papers
have been written on improving the speed of the Hough
transform. However, even with these improvements,
many speed and accuracy problems still remain.
 There are also several different approaches for the
extraction of circles from digital images [12], [13], [14],
[15], [16]. However, most of these algorithms are very
slow and cannot be easily used in real-time applications.
Most of the current algorithms extend the Hough trans-
form line detection algorithm to the detection of circles.
The Hough transform detects lines by transforming the
input image into a two-dimensional histogram which
corresponds to the two degrees of freedom present in the
equation of a straight line. Thus when this principle is
extended to the detection of circles, a three-dimensional
histogram is required. This extra dimension greatly
increases the computation time of the algorithm. To
overcome this limitation, various approaches have been
suggested, such as using the gradient information to im-
prove the detection of the center of the circle. However,
even these faster algorithms require a significant amount
of time to extract circles from simple images.
 The fundamental difference between the proposed
algorithm and these other algorithms is that the proposed
algorithm processes the original intensity image directly,
whereas the other algorithms use at least one pre-
processing step to locate the edge pixels. This pre-
processing step is used to reduce the effects of blurred
edge transitions and other sources of noise, which are
common in natural images. However there are three
serious problems with pre-processing that reduce the ef-
fectiveness of the subsequent line or circle extraction
algorithms. The first problem is that the edge pixels are

 2

usually correlated in the intensity image in that they form
the boundary between two relatively uniform intensity
regions, and this correlation is removed by pre-processing.
The second problem is that pre-processing consumes a
significant amount of processing time, especially if the
image is complex and extraneous edge pixels need to be
removed. The third problem is that the edge pixel ex-
traction is usually performed by a high-pass spatial filter
and is therefore sensitive to high-frequency noise.
 Another fundamental difference between the pro-
posed algorithm and the traditional algorithms is that the
proposed algorithm extracts both lines and circular arcs
simultaneously. This is cannot be done by the traditional
methods as the histograms for extracting lines are com-
puted differently than the histograms used for extracting
circles. However, images from real-world applications
usually contain both lines and arcs, thus it is advantageous
to be able to extract both types of features at the same
time.
 In this paper an accurate, high-speed extraction algo-
rithm that simultaneously extracts both lines and circular
arcs directly from the intensity image is presented. By
using the correlation provided by the intensity information
in the image, simple linear regression can be used to ex-
tract the lines and circular arcs, thus greatly reducing the
computation cost of the extraction process. The pro-
posed algorithm has a variety of practical applications due
to its high computation speed. Some of these applica-
tions are driver assistance, autonomous robots, high-speed
character recognition, pattern recognition, face recogni-
tion, aerial image classification, security systems, and
automatic quality control.
 In the following section the proposed algorithm is
explained. The basic principle of the algorithm is to
combine the edge pixel extraction and the feature extrac-
tion into a single step. To do this any edge operator may
be used to locate and follow the boundary of an intensity
region. Then the features of the lines and circular arcs
that form the boundary are calculated using simple linear
regression. In the third section experiments are per-
formed using a variety of synthetic and natural images to
verify the speed and accuracy of the proposed algorithm.
Finally the paper is concluded in the fourth section.

2 The Algorithm

2.1 The Definition of a Line and a Circle
Almost all of the conventional line and circle extraction
algorithms first generate a binary edge image by pre-
processing the original intensity image with an edge ex-
traction operator. Then the features of the line or circle
are calculated using the binary edge image. As a result
of this pre-processing the definition of a line becomes, “a

collection of edge pixels that satisfy the equation of a
straight line, y = m⋅x + b.” Where x and y are the coordi-
nates of the edge pixel, m is the slope and b the intercept
of the line. In a similar manner, the definition of a circle
becomes, “a collection of edge pixels that satisfy the equa-
tion, (x − X0)2 + (y − Y0)2 = R2.” Where R is the radius of
the circle, and X0 and Y0 are the coordinates of the origin
of the circle. However an alternative definition of a line
is, “the straight line segments that form the border be-
tween two regions of different intensity within an image,”
and the corresponding definition of a circle is, “the circu-
lar arc segments that form the border between two regions
of different intensity within an image.” These new defi-
nitions for lines and circles lead directly to a new extrac-
tion algorithm with the following steps:

(1) Locate a region of uniform intensity.
(2) Trace the perimeter of the region and record the

coordinates of the pixels.
(3) Form lines or circular arcs from this set of cor-

related pixel coordinates.
(4) Repeat steps 1 through 3 for the remaining re-

gions of uniform intensity.
 Step (1) is similar to the pre-processing used by the
conventional algorithms and step (3) is similar to the con-
ventional extraction algorithms. The difference is that
the conventional algorithms perform these steps individu-
ally in series, while the proposed algorithm performs them
in parallel. Steps (1), (2), and (3) in the proposed algo-
rithm correspond to the scanning, perimeter tracing, and
feature extraction modes, respectively, and are described
below.

2.2 The Scanning Mode
The scanning mode begins at the bottom, left corner of the
image, (0, 0), and scans from left to right and bottom to
top looking for a significant transition in image intensity
that would indicate the presence of a new intensity region.
Once such an intensity transition has been detected the
scanning mode will call the perimeter tracing mode to
extract the pixels that correspond to the border of the
intensity region. However, if this pixel has already been
determined to belong to a line or circular arc the scanning
mode will advance to the next pixel without calling the
perimeter tracing mode. This prevents the same line or
circle from being extracted multiple times.
 Any of the conventional edge operators may be used
in this mode to detect an intensity transition. In this
paper the following equations were used to determine if
the pixel at (x, y) is the start of a new intensity region:
 TII yxyx >− + ,1, (1)

 TII yxyx >− +1,, (2)

Where Ix,y is the intensity of the pixel at (x, y) and T is the
threshold. This threshold level was determined by ex-
perimentation and set at a value of 40 for 8-bit grayscale

 3

images and was not changed for all the experiments. If
either equation (1) or (2) is true then a new intensity re-
gion has been located and the perimeter tracing mode
described in the next section is used to trace the perimeter
of the intensity region.

2.3 The Perimeter Tracing Mode
When the value of the scanning mode exceeds a certain
threshold the border of an intensity region has been lo-
cated and the algorithm begins the perimeter tracing
mode. The tracing mode assumes that a pixel with an
intensity within the range of the starting pixel plus or
minus the threshold is “inside” of the intensity region and
if the intensity is outside this range then the pixel is as-
sumed to be “outside” of the intensity region.
 To follow the perimeter of the intensity region the
tracing mode must be able to move to each of the eight
neighboring pixels, thus eight separate tracing functions
are required. In each of the tracing functions at least one
of the four cardinal pixels must be outside of the intensity
region. From this outside pixel the tracing function will
search for the nearest pixel inside the region by using the
tracing functions shown in Fig. 1.

Figure 1: Perimeter tracing functions. In this figure, the
numbers show the searching order, the letters show the
tracing function called, the black squares show the pixels
that must be outside of the intensity region and the arrows
show the direction the tracing mode has moved since the
previous iteration.
 To understand Fig. 1, the tracing function shown in
Fig. 1(a) will be described in detail. In this figure, the
tracing mode has just moved from the bottom right pixel
to the center pixel as shown by the arrow. Since the
bottom center pixel is known to be outside of the intensity
region the tracing function searches the cardinal pixels in
a clockwise manner from this pixel, looking for a pixel
that is inside the region. The reason the cardinal pixels

are given preference over the diagonal pixels is that they
represent definite boundaries whereas the diagonal pixels
may be noise. If one of the cardinal pixels is inside of
the intensity region, its counter-clockwise diagonal pixel
will also be tested, for example if the middle left pixel is
found to be inside the region then the bottom left pixel
will also be tested. Once the intensity transition has been
located the tracing function will call the function labeled
in the box. For example if the bottom left pixel is deter-
mined to be the boundary pixel then tracing function (f)
will be called. Then the pixel will be marked as belong-
ing to a line or a circle and its coordinates will be recorded
in a list for the line feature extraction mode. It should be
noted that the perimeter tracing mode is allowed to back-
track on itself so that it can escape from possible traps.
It can be seen that these functions form a recursive algo-
rithm that can move counterclockwise around the intensity
region. The tracing mode ends when it arrives back at
the starting point or at the edge of the image. Once a
terminal condition occurs the perimeter tracing mode will
end and the feature extraction mode will begin.

2.4 The Feature Extraction Mode
The feature extraction mode begins at the start of the list
of pixel coordinates extracted by the perimeter tracing
mode and uses simple linear regression [17] to compute
the equations of the line segments and circular arcs. This
mode uses the mean-square error (MSE) from the actual
pixel to the calculated line or circular arc to control which
pixels belong to the curve. First, the feature extraction
mode assumes the pixels belong to a line segment, how-
ever if the MSE exceeds the MSE threshold then the mode
will try to fit the pixels to a circular arc.
 To calculate the MSE of the best-fit line for the first
N pixels in the list the following equations are used:

 ∑ ∑
= =









−=

N

i

N

i
iixx x

N
xS

1

2

1

2 1
 (3)

 ∑ ∑
= =









−=

N

i

N

i
iiyy y

N
yS

1

2

1

2 1
 (4)

 ∑ ∑∑
= ==

−=
N

i

N

i
i

N

i
iiixy yx

N
yxS

1 11

1
 (5)

 If |Sxx| > |Syy| then the slope, m, and the intercept, b,
of the best-fit line, y = m⋅x + b, and the error sum of
squares (SSE) are given by Equations (6) to (9), otherwise
the complementary equations which replace Sxx with Syy
and xi with yi are used.

xx

xy

S
S

m = (6)

 







−= ∑ ∑

= =

N

i

N

i
ii xmy

N
b

1 1

1
 (7)

 4

 xyyy SmSSSE ⋅−= (8)

N

SSEMSE = (9)

 If the MSE for the line segment is greater than the
MSE threshold, the least squares circle fitting algorithm
given by the following equations is used to calculate the
best-fit circle parameters.

 ∑ ∑∑
= ==

−=
N

i

N

i
i

N

i
iixx xx

N
xS

1 11

23 1
2 (10)

 ∑ ∑∑
= ==

−=
N

i

N

i
i

N

i
iiiyx

yx
N

yxS
1 11

22 1
2 (11)

 ∑ ∑∑
= ==

−=
N

i

N

i
i

N

i
iiixy

yx
N

yxS
1 1

2

1

2 1
2 (12)

 ∑ ∑∑
= ==

−=
N

i

N

i
i

N

i
iiyy yy

N
yS

1 11

23 1
2 (13)

()
()











−

+−+
=

xx

xy
yy

xyxx
xx

xy
yyyx

S
S

S

SS
S
S

SS
Y

20

2

2222

 (14)

xx

xyxyxx

S

SYSS
X

2

2 0
0

22 −+
= (15)

2
0

2
0

1 1
0

1
0

2

1

2 22
YX

N

yYxXyx
R

N

i

N

i
i

N

i
ii

N

i
i

++
−−+

=
∑ ∑∑∑
= === (16)

Since a circle is a quadratic equation the MSE must be
calculated by the following equation:

() ()∑
=






 −+−−=

N

i
ii YyXxR

N
MSE

1

2
2

0
2

0
1

 (17)

 If the MSE is greater than a pre-determined threshold
for the given line segment or circular arc then the feature
extraction mode will start a new extraction from this pixel.
This procedure is continued until all the pixels in the list
have been processed, and then the feature extraction mode
will return to the scanning mode. The extracted line
segments and circular arcs are stored in a list and can be
used directly or further analyzed as required by the appli-
cation.

3 Experiments

In order to demonstrate the high speed and accuracy of the
proposed extraction algorithm, two experiments were
performed. In the first experiment a synthetic image of a

snowman was used to test the robustness of the algorithm.
In the second experiment several synthetic and real world
image were used to demonstrate the speed of the proposed
algorithm. Both experiments were performed on a 1.4
GHz Athlon processor, and all test images were 256 × 256
grayscale images.

3.1 Robustness Experiment

 (a) (b)

(c)

Figure 2: Noiseless snowman experiment. (a) original
snowman image; (b) true edge pixels; (c) extracted line
segments and circular arcs.

To test the robustness of the line segment and circular arc
extraction, the synthetic image of a snowman shown in
Fig. 2(a) was used. Since the algorithm extracts lines
and circles on both sides of the intensity transition, the
algorithm will extract two lines or circles for each side of
the intensity region. Therefore, to test the accuracy of
the extraction algorithm the true edge pixels shown in Fig.
2(b) were used. The results of the extraction algorithm
are shown in Fig. 2(c) and are summarized in Table 1,
column 1, by recording the number of lines, the number of
circles, the strict accuracy and the ±1 accuracy. The
strict accuracy is the percentage of pixels that are exactly
the same as those shown in Fig. 2(b) and includes both
types of errors due to missing pixels and falsely classified
pixels. Therefore it is possible to have a negative accu-
racy if there are more false pixels than correctly classified
pixels. The ±1 accuracy is a more lenient accuracy in
that it allows a pixel to fall within a radius of one pixel
from the exact pixel. From the results shown in Table 1,
column 1, it can be seen that the algorithm extracts the
lines and circular arcs with very high accuracy.

 5

 (a) (b)

 (c) (d)
Figure 3: Corrupted snowman experiment. (a) test image
mildly corrupted with Gaussian noise (mean = 0, variance
= 100) and with salt and pepper noise (probability =
5%); (b) extraction results; (c) test image heavily cor-
rupted with Gaussian noise (mean = 0, variance = 200)
and with salt and pepper noise (probability = 10%); (d)
extraction results.

 Table 1: Accuracy Results.
 Fig. 2(a) Fig. 3(a) Fig. 3(c)
Lines 23 28 57
Circles 24 25 36
Strict Accuracy (%) 91.37 80.78 52.8
±1 Accuracy (%) 99.96 99.73 88.83

 To show that the algorithm is robust in the presence
of noise the original image shown in Fig. 2(a) was cor-
rupted with additive Gaussian noise (mean = 0, variance =
100, 200) and additive salt and pepper noise (probability =
5, 10%) [18]. The first image shown in Fig. 3(a) was
mildly corrupted with Gaussian noise (mean = 0, variance
= 100) and with salt and pepper noise (probability = 5%)
and the second image was heavily corrupted with Gaus-
sian noise (mean = 0, variance = 200) and with salt and
pepper noise (probability = 10%). The resulting images,
extracted with the same parameters as was used in the
noiseless case, are shown in Figs. 3(b) and (c), respec-
tively. The strict accuracy and the ±1 accuracy were
calculated by using the true edge pixels shown in Fig.
2(b). From these images and the results shown in Table
1, columns 2 and 3, it can be seen that the proposed algo-
rithm retains high accuracy with low levels of noise and is

still robust in extracting lines and circular arcs from
highly corrupted images.

3.2 Speed Experiment

 (a) (b)

 (c) (d)

 (e) (f)

 (g) (h)
Figure 4: Computational speed experiment. (a) blueprint;
(b) results; (c) chain image; (d) results; (e) circuit board;
(f) results; (g) structure image; (h) results.

To demonstrate the speed of the proposed algorithm sev-
eral real-world and synthetic images were tested. These
images are shown in Fig. 4 and consist of a blueprint, a
chain, a circuit board, and a structure. The parameters of

 6

the algorithm were the same as those used in the previous
experiment. All experiments were performed on a 1.4
GHz Athlon processor, and all test images were 256 × 256
grayscale images. The computation times for the images
shown in Figs. 2, 3, and 4 are recorded in Table 2, column
3. From Table 2 it can be seen that the proposed algo-
rithm has an average processing time of 0.0058 seconds
for 256 × 256 grayscale images, thus verifying the speed
of the algorithm.

Table 2: Computation Time.
 Lines Circles Time (s)
Fig. 2(a) 23 24 0.00358
Fig. 3(a) 28 25 0.00543
Fig. 3(c) 57 36 0.00796
Fig. 4(a) 413 185 0.00849
Fig. 4(c) 63 64 0.00470
Fig. 4(e) 91 146 0.00543
Fig. 4(g) 96 43 0.00471
Average 110 75 0.0058

3.3 Standard Hough Transform Comparison
 In order to compare the speed and accuracy of the
proposed algorithm with the conventional approaches, the
standard Hough transform for lines was modified for cir-
cles (SHTC). Thus the two dimensional histogram used
for lines was expanded to a three dimensional histogram.
The three dimensions are the x and y coordinates of the
origin and range from 0 to the size of the input image, and
the radius which can range from 3 pixels to twice the size
of the image. To convert the input image into the edge
image needed for the SHTC, the Sobel operator was used,
but this computation cost is not recorded in the results.
The same experiments presented in Sections 3.1 and 3.2
were repeated using the SHTC and the results are shown
in Fig. 5 and are summarized in Table 3. In Table 3,
Columns 2 and 3, there are negative accuracies. This
results from having more false circles than true circles, as
can be seen in Fig. 5(d). As can be seen from the results
the SHTC is only designed to extract the circles and the
standard Hough transform for lines would have to be used
on the unclassified edge pixels to extract the lines thus
increasing the extraction time.

Table 3: SHTC Experimental Results.
 Strict Acc. (%) ±1 Acc.(%) Time (s)
Fig. 2(a) 41.55 87.37 57.42
Fig. 3(a) 21.60 57.54 2980.48
Fig. 3(c) -79.77 -42.10 4987.21
Fig. 4(a) N.A. N.A. 413.62
Fig. 4(c) N.A. N.A. 136.63
Fig. 4(e) N.A. N.A. 225.77
Fig. 4(g) N.A. N.A. 202.21
Average -5.54 34.27 1286.19

 (a) (b)

 (c) (d)

 (e) (f)

 (g) (h)
Figure 5: SHTC experiments. (a) results of the Sobel op-
erator for Fig. 2(a); (b) extraction results for Fig. 2(a);
(c) extraction results for Fig. 3(a); (d) extraction results
for Fig. 3(c); (e) extraction results for Fig. 4(a); (f) ex-
traction results for Fig. 4(c); (g) extraction results for
Fig. 4(e); (h) extraction results for Fig. 4(g).

 If the results shown in Table 3 are compared with
those shown in Tables 1 and 2, it can be seen that the
proposed algorithm is more that 200,000 times faster than
the SHTC while realizing a nine fold reduction in error.

 7

3.4 Modified SHTC Comparison
 The SHTC is one of the most accurate of the tradi-
tional approaches to circle extraction, however it is also
one of the slowest approaches due to its three dimensional
histogram. In order to improve the speed of circle ex-
traction several modified approaches have been proposed
that reduce the size of the histogram to two dimensions by
exploiting the geometrical properties of circles. In order
to compare the speed of the proposed algorithm with these
modified SHTC algorithms, the voting time required for
two of these modified methods was used. These two
methods are the Davies method [19] and the Tsuji method
[20]. The time required for voting only was calculated
for the same 256 × 256 grayscale images and the same 1.4
GHz. Athlon processor was used as in the previous ex-
periments. Only the voting time was calculated and not
the entire circle extraction process, therefore no accuracy
calculations are possible. The voting computation time
for both of these methods is recorded in Table 4.

Table 4: Modified SHTC Voting Time
 Davies Method

Voting Time (s)
Tsuji Method

Voting Time (s)
Fig. 2(a) 0.19 172.42
Fig. 3(a) 12.52 1509.07
Fig. 3(c) 24.17 2626.45
Fig. 4(a) 18.53 1682.45
Fig. 4(c) 2.53 502.81
Fig. 4(e) 2.84 859.45
Fig. 4(g) 5.34 674.11
Average 9.44 1146.68

 By contrasting the results shown in Table 4 with
those shown in Table 2 it can be seen that the proposed
algorithm is more than 1600 times faster than the voting
time of the Davies method and 197000 times faster than
the voting time of the Tsuji method. These results dem-
onstrate the efficiency of the proposed method.

4 Conclusion

This paper has presented an algorithm that can extract
lines and circles simultaneously from the original intensity
image. Experiments have shown that the algorithm is
robust in the presence of noise and can extract lines and
circles with an average ±1 accuracy of more than 90%,
even from heavily corrupted images. The algorithm is
very fast with an average processing time of 0.0058 sec-
onds using a 1.4 GHz Athlon processor and 256 × 256
grayscale images.

Acknowledgements
This work was made possible by support from the Japan
Society for the Promotion of Science.

References

[1] R.C. Gonzalez and P. Wintz, Digital Image Proc-
essing, second ed. Addison-Wesley, Reading Mas-
sachusetts, 1987.

[2] D.H. Ballard and C.M. Brown, Computer Vision.
Prentice-Hall, Englewood Cliffs, New Jersey,
1982.

[3] D.H. Ballard, “Generalizing the Hough Transform
to Detect Arbitrary Shapes,” Pattern Recognition,
vol. 13, no. 2, pp. 111-122, Mar. 1981.

[4] H. Li, M.A. Lavin and R.J. LeMaster, “Fast Hough
Transform: A Hierarchical Approach,” Computer
Vision, Graphics, and Image Processing, vol. 36,
no. 2, pp. 139-161, Nov. 1986.

[5] O. Chutatape and L. Guo, “A Modified Hough
Transform for Line Detection and its Perform-
ance,” Pattern Recognition, vol. 32, no. 2, pp. 181-
182, Feb. 1999.

[6] Y. Zhang and R. Webber, “A Windowing Ap-
proach to Detecting Line Segments Using Hough
Transform,” Pattern Recognition, vol. 29, no. 2,
pp. 255-266, Feb. 1996.

[7] L. Xu and E. Oja, “Randomized Hough Transform
(RHT) – Basic Mechanisms, Algorithms, and
Computational Complexities,” CVGIP – Image
Understanding, vol. 57, no. 2, pp. 131-154, Mar.
1993.

[8] J. Yuan and C.Y. Suen, “An Optimal O(n) Algo-
rithm for Identifying Line Segments from a Se-
quence of Chain Codes,” Pattern Recognition, vol.
28, no. 5, pp. 635-646, May 1995.

[9] A. Pikaz and I. Dinstein, “Optimal Polygonal Ap-
proximation of Digital Curves,” Pattern Recogni-
tion, vol. 28, no. 3, pp. 373-379, Mar. 1995.

[10] J.W. Lee and I.S. Kweon, “Extraction of Line
Features in a Noisy Image,” Pattern Recognition,
vol. 30, no. 10, pp. 1651-1660, Oct. 1997.

[11] J.W. Gates, M. Haseyama and H. Kitajima, “A
Real-time Line Extraction Method,” IEEE Interna-
tional Symposium on Circuits and Systems’99, vol.
IV, pp. 68-71, May 1999.

[12] N. Guil and E.L. Zapata, “Lower Order Circle and
Ellipse Hough Transform,” Pattern Recognition,
vol. 30, no. 10, pp. 1729-1744, 1997.

[13] R.S. Conker, “A Dual Plane Variation of the
Hough Transform for Detecting Non-concentric
Circles of Different Radii,” Computer Vision

 8

Graphics and Image Processing, vol. 43, pp. 115-
132, 1988.

[14] W.C.Y. Lam and S.Y. Yuen, “Efficient Technique
for Circle Detection Using Hypothesis Filtering
and Hough Transform,” IEE Proceedings. Vision,
Image, and Signal Processing, vol. 143, no. 5, pp.
292-300, 1996.

[15] R. Chan and W.C. Siu, “New Parallel Hough
Transform for Circles,” IEE Proceedings. Vision,
Image, and Signal Processing, vol. 138, no. 5, pp.
335-344, 1991.

[16] E. Kim, M. Haseyama and H. Kitajima, “A New
Fast and Robust Circle Extraction Algorithm,” In-
ternational Conference on Vision Interface’02, pp.
439-446, May 2002.

[17] E.R. Dougherty, Probability and Statistics for the
Engineering, Computing, and Physical Sciences.
Prentice Hall, Englewood Cliffs, New Jersey,
1990.

[18] H.R. Myler and A.R. Weeks, The Pocket Hand-
book of Image Processing Algorithms in C, Pren-
tice Hall, Englewood Cliffs, New Jersey, 1993.

[19] E.R. Davies, “A Modified Hough Scheme for Gen-
eral Circle Location,” Pattern Recognition Letters,
vol. 7, no. 1, pp. 37-47, 1988.

[20] S. Tsuji and F. Matsumoto, “Detection of Ellipses
by a Modified Hough Transformation,” IEEE
Transactions on Computers, vol. C-27, no. 8, pp.
777-781, 1979.

