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Abstract 
 

We present a simple shape-from-shading algorithm that uses 
two shading images. This enables us to estimate more accurate 
shapes of objects without any special constraints or conditions 
than the existing photometric stereo algorithms. The Jacobi’s 
iterative method is applied to the difference between the image 
and the reflectance function represented as a function of three 
depth parameters for each of the two images, and the resulting 
two iterative relations are combined to get a single iterative 
relation. The algorithm is analytically shown to be numerically 
stable. Two supplementary methods are also presented to 
enhance its applicability. Computer experiments clearly show 
its usefulness and robustness to noise. Typically it takes 
seconds using a 1.2GHz Pentium III PC to get shapes from two 
50x50 shading images. 
 
1 Introduction 
 

Since Horn initiated the research on shape-from-shading more 
than two decades ago [1], significant developments have been 
made [2], [3]. A majority of papers focus on estimating shapes 
from single shading images. Approaches presented so far may 
be classified in a broader view to local [4], [5], [6] and global 
[1], [7], [8], [9] ones, and global approaches may be classified 
to the categories of minimization [10], [11], [12], linear [9], 
[13] and propagation [1], [14], [15], [16]. A few papers, on the 
other hand, focus on estimating shapes from multiple images 
[17], [18]. 

As for the global approaches, minimization ones are based 
upon minimizing a given energy criterion to estimate the shape. 
For example, Zheng and Chellappa [11] introduced image 
gradient and integrability constraints to obtain fine details. 
Worthington and Hancock [12] introduced curvature 
consistency and image gradient ones as constraints. Linear 
approaches linearlize the reflectance map in tilts or depth. 
Pentland applies Fourier transform after linearlizing the 
function in tilts, but its applicability is limited due to the 
approximations. Tsai and Shah [9] approximate the relation 
linearlized in the depth and use the Newton-Raphson method to 
obtain an iterative relation. Their algorithm is fast in time but 
lacks reconstruction quality of shape. We also presented a 
nonlinear approach by applying the Jacobi iterative technique 
to the image irradiance equation represented by the three depth 
parameters, where we carry out bi-directional estimation to 
minimize shape distortions [19]. Propagation approaches are to 
obtain a shape starting from some initial curve, which uses such 
special points as the brightest or the darkest [1]. For example, 
Kimmel et al. show that good shape reconstruction is possible 
with boundary conditions [16], which, however, may be too 
demanding and may make the processing complicated as the 
object is more complex.  

As for the estimation using multiple images, Woodham 
proposes to use three shading images to uniquely decide the 
gradient map of the surface [17]. Using two images, on the 
other hand, may lead to a partially incorrect map [18]. Rocchini 

et al. take six shading images and choose good ones free from 
effects of specular reflection or shadow [20]. The conversion 
from the gradient map to the depth or height one, however, is 
not straightforward. Frankot et al., for example, present a 
method using Fourier transform [21]. But the method tends to 
give rise to noticeable undulant shapes especially to flat or near 
flat parts. 

In this paper we present a simple shape-from-shading 
algorithm by developing our previous method to the case of 
using two images, aiming at estimating accurate and reliable 
shapes for a variety of objects and illuminating conditions, 
without any special conditions or constraints. We also present 
supplemental methods to enhance the applicability of the 
algorithm. The principle, an analysis on numerical stability, and 
comprehensive computer experiments are given. 
 
2 Principle 
 

The object is illuminated sequentially from each of two 
different directions to obtain two shading images. Given a 
reflectance function R(p,q), there holds the relation between the 
function and the image I(x,y) for each illumination: 
 

),(),( yxIqpR ii = , i = 1, 2 (1) 
 

where x, y = 1, …, N, and the images are assumed to be 
normalized to unity. Let P and S be the surface normal of the 
object and illuminant vector, respectively: 
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where p and q are given by -∂z/∂x and -∂z/∂y, respectively. 
Then, for the Lambertian surface, the reflectance function, 
normalized by albedo, is given by their scalar product:  
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Letting z(x,y) be the depth or shape, the discrete forms of p and 
q may be given by 
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This simplest approximation appears to suffice in our case, but 
using more sophisticated approximations [22] could possibly 
improve the accuracy in shape when the object shape is very 
complex.  

Then, Ri can be regarded to be a function of three variables 
z(x,y), z(x-1,y) and z(x,y-1). Applying the Jacobi’s iterative 
method to the function fi(x,y) defined by 
 

( ) ( ) ( )qpRyxIyxf ii ,,, −≡ , i = 1, 2 (6) 
 

we obtain the following iterative relations 
 



( )

( )

( ))1()(

)1(

)1()(

)1(

)1()(

)1(

)1(

)1,()1,(
)1,(

),(

),1(),1(
),1(

),(

),(),(
),(

),(
),(

−

−

−

−

−

−

−

−−−







−∂

∂+

−−−







−∂

∂+

−







∂
∂=−

nn

n

i

nn

n

i

nn

n

in
i

yxzyxz
yxz

yxf

yxzyxz
yxz

yxf

yxzyxz
yxz

yxf
yxf

  i=1,2 (7) 

 

where n is the number of iterations. These can be rewritten in 
matrix form as 
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where fi , i = 1, 2, are vectors of N2 elements of fi(x,y), z is a 
vector of N2 elements of z(x, y), and gi , i = 1, 2, are matrices of 
N2xN2 elements that are made of ∂fi(x,y)/∂z(x,y), 
∂fi(x,y)/∂z(x-1,y) and ∂fi(x,y)/∂z(x,y-1). The two matrix relations 
can be combined to give the following single relation: 
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Eq. (9) can be solved for z(n) as 
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Thus, the shape is estimatable iteratively using the relation in 
Eq. (12), typically beginning with null values z(0) = 0. 
 
3 Numerical Stability 
 

In order for Eq. (12) to be carried out, the determinant of GTG 
must be significant for any number of iterations. Since the 
determinant is given by the product of all the diagonal elements, 
the condition can be reduced to that all the diagonal elements, 
that is, all the eigenvalues must be significant. We obtain those 
eigenvalues from Eqs. (7)-(12) as 
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It is seen that all of them are non-negative, and that (N-1)2 in N2 

eigenvalues consist of six terms, 2(N-1) in N2 eigenvalues 
consist of four terms, and one in N2 eigenvalues consists of two 
terms. 

In the case where only a single shading image is available, 
on the other hand, Eq. (8) can be used for the shape estimation 
rather than Eq. (9). In this case the determinant of g must be 
significant throughout the iteration. This is given by the product 
of all the diagonal terms, which are given from Eqs. (7) and (8) 
as 
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It is seen that they are not non-negative. Actually they can be 
null for the image parts where the surface normal P of the 
shape being reconstructed is parallel to the illuminant vector S.  

In the system being presented, the terms in Eq. (13) may not 
in general be null simultaneously because the two illuminating 
directions are different and because three kinds of derivatives 
are different of each other in their characteristics. Thus we are 
able to execute the iteration in Eq. (12) for most objects and 
illuminating conditions to obtain converged solutions for the 
shape.  

 
4 Two Methods to Enhance Applicability 
 

4.1 Rotation of Images 
It is noted that in case the eigenvalues for the two images are 
null simultaneously at x = N and y = N for z(0) = 0, rotating the 
coordinates, or the images together with their illuminant 
vectors instead, may enable us to carry out the estimation. For 
example, let S1 and S2 be equal to (-1,1,1) and (1,-1,1), or 
(0,0,1) and (-1,1,1), respectively, hereafter the normalizing 
coefficients are omitted. These make the eigenvalue null at (x,y) 
= (N,N) for the initial value of z(0) = 0, making impossible to 
carry out the iteration. If we rotate the coordinates by 90 
degrees, then S1 and S2 are (1,1,1) and (-1,-1,1), or (0,0,1) and 
(1,1,1), respectively, enabling to carry out the iteration using 
the initial value. 
 

         y                                   x 
  S1                                S1R

 

 
 
 
 

                       S2                                 S2R 
                         x     y   
             (a)                         (b) 
Fig. 1 The illuminant vectors S1=(-1,1,1) and S2=(1,-1,1) can 
equivalently be changed to S1R=(1,1,1) and S2R=(-1,-1,1) by 
rotating the coordinates by 90 degrees. 
 
4.2 Boundary Conditions 
We can make an assumption in Eq. (4) that p = 0 along the line 
of x = 1 and 1 ≤ y ≤ N, and q = 0 along the line of y = 1 and 1 ≤ 
x ≤ N. It is needless to make a similar assumption along the 
other two boundaries, when we use Eq. (5). We can also make 
another assumption that p(1,y) = p(2,y), 1 ≤ y ≤ N and q(1,y) = 
q(2,y), 1 ≤ x ≤ N. If these assumptions do not fully agree with 
the shape, significant shape distortions may appear, as will be 
shown.  

We adopt two methods to avert such distortions. One is to set 
the coordinates axes along the flat intensity boundaries, if they 
are available, so that the first assumption for Eq. (4) holds. If 
not, such flat intensity boundaries are added to the image, as 
shown in Fig. 2, so that the first assumption for Eq. (4) holds. 
The addition works for most cases of the illuminant vectors, as 
will be shown. 

 

 
 
 
 
 
               (a)               (b) 
Fig. 2 If the image does not have two neighboring flat intensity 
boundaries as in (a), they are added to the image as in (b). 



5 Computer Experiments 
 

Two shapes that are mostly used are shown in Fig. 3. One is a 
semi-sphere and the other is the measured data of a Mozart 
sculpture [23]. Assuming the surfaces to be Lambertian, 
shading images were computationally generated which have the 
size of 50x50 in pixel. 

First, for comparison, shapes were reconstructed from single 
shading images for a variety of illuminant vectors using the 
basic algorithm [19]: 
(1) The coordinates are rotated so that the illuminant vector 

has the tilt angle of 45 degrees. If this accompanies the 
increase in image area, the image intensity value 
corresponding to the flat surface is filled in the vacant 
areas. 

(2) The shape is estimated iteratively using Eq. (8), where the 
iteration is stopped when the minimal eigenvalue 
decreases to a value less than, for example, 0.1. This 
estimation is carried out bi-directionally. 

(3) The two shapes are averaged with appropriate weights that 
is determined by evaluating average magnitudes of (p,q) of 
the shapes. 

(4) The shape within the region of the original images is 
extracted. 

Shading images for eight illuminant vectors, which are 
different in tilt angle, and the obtained shapes are shown in Figs. 
4 and 5, respectively. Also, shading images for five illuminant 
vectors, which are different in slant angle, and obtained shapes 
are shown in Figs. 6 and 7, respectively. It is seen from the 
results in Fig. 5 that shapes for tilt angles of 0, 45, 180, 225 
degrees are relatively good but those for tilt angles of 90, 135, 
270, 315 degrees are not. It is seen from the results in Fig. 7 
that shapes for slant angles of 45 and 60 degrees are relatively 
good but those for other angles are not. So the shape obtainable 
from a single image is limited in quality. 

In the case of using two images, shapes estimated from 
typical pairs of shading images are shown in Fig. 8, first, for 
the semi-sphere. In this case all the images have flat intensity 
boundaries, so the shape can be estimated in either forward or 
backward direction. The results show that the reconstructed 
shapes are very close to the original one regardless of the 
differences in tilt or slant angle of the illuminant vectors. An 
error distribution in depth and a profile of the convergence are 
shown in Fig. 9 for the pair of S=(5,5,7) and (-5,5,7). The 
distribution is very similar to those of the other pairs in Fig. 8, 
and the profile is also very similar to them except for the pair of 
(1,0,1) and (-1,0,1), which once is on the verge of divergence 
before convergence. The reconstructed shapes have the 
maximal depth differences of, from top to bottom in Fig. 8, 87, 
87, 82, 83, 92, 94% of the original one. This may come from 
that the surface gradients obtained are smaller than the actual 
ones along the circle where the hemi-sphere and the flat part 
meet, as the distribution in Fig. 9 indicates. 

Shapes estimated for typical pairs of the illuminant vectors 
for the Mozart are shown in Fig. 10, where backward 
estimation was carried out because of the boundary condition. 
All the shapes in Fig. 10 appear very similar to the original one 
except for minor distortions, such as non-flat part for the (0,0,1) 
and (5,5,7) pair. The convergence is fast similarly to the 
semi-sphere case, as shown in Fig. 11. Figure 12 shows the 
robustness of the algorithm to such illuminant vectors that 
make reconstructing a shape from a single image difficult, 
although distortions tend to increase. It is not possible to 
estimate the shape for the images with the illuminant vectors, 
(0,0,1) and (5,-5,7), but rotating the images together with the 
vectors by 90 degrees makes it possible as shown in Fig. 13. 
Figure 14 shows that when the estimation is carried out in the 

forward direction in the absence of the flat intensity boundaries, 
the obtainable shape changes partially or wholly depending on 
the boundary condition assumed, but that if we add flat 
intensity boundaries to the images we can obtain a good shape. 
It is noted that the top-right shape in Fig. 14 is not a converged 
one but deteriorates further with the iteration.  

Our method was applied also to the images of a computer 
mouse to reconstruct its shape. The shape data was obtained 
with a laser range scanner, and two 80x80 pixel shading images 
computer-generated for S = (-5,-5,7) and (5,-5,7) are shown in 
Fig. 15. Significant structural noise is observable over the 
mouse and letters on the mouse appear to be local noise or 
depth variations. The estimation was carried out in the forward 
direction. In Fig. 15 the estimated shape is represented both by 
wire-frame and with the superposition of the texture in (a), and 
it is viewed from the front and back. It is seen that the shape is 
finely reconstructed and that it is clearly robust to noise. 

 
6 Conclusions 
 

We presented a shape-from-shading method using two images 
that can reconstruct accurate shapes for most cases. The 
algorithm is very simple, and its execution is not in real time 
but does not take time either. We are studying the algorithm 
that enables us to get more accurate shapes for any illuminating 
conditions. 
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  (a) Shape of a semi-sphere  (b) Shape of a Mozart sculpture 
 

Fig. 3 Two shapes used in the computer experiments. 
 

  

 

 

  
 

Fig. 4 Eight shading images with original illuminant vectors 
(1,0,1), (5,5,7), (0,1,1), (-5,5,7), (-1,0,1), (-5,-5,7), (0,-1,1), 
(5,-5,7) unclockwise from the middle right. They were rotated 
so that the tilt angles are equal to 45 degrees. 
 
 
 

 

   

 

 

 

  
 

Fig. 5 Estimated shapes from the single shading images in Fig. 
4. 
 

 

Fig. 6 Five shading images with illuminant vectors (1,1,6), 
(2,2,5), (5,5,7), (6,6,5) and (5,5,2), from let to right. They 
correspond to the slant angles of 13, 30, 45, 60, and 74 degrees, 
respectively. 
 

   

 

 

 

Fig.7 Reconstructed shapes for the images in Fig. 6, where the 
top left is for S = (1,1,6) and the bottom center is for (5,5,2). 
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Fig. 8 Reconstructed shapes for six pairs of two shading images. 
The differences in slant and tilt angles of the two illuminant 
vectors are, from top to bottom, (0,180), (0,90), (0,90), (0,45), 
(40,0), (85,0) degrees. On the center are frontviews of the 
shapes and on the right are their backviews. 
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Fig. 9 An error distribution in depth value and a profile of the 
difference between the neighboring shapes which are 
normalized to [0,1]. One iteration takes about 2 seconds.  
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Fig. 10 Front and back views of reconstructed shapes for four 
typical pairs of two shading images, which are on the left with 
their illuminant vectors. 
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Fig. 11 Profile in the difference of the neighboring shapes in 
the iteration for the Mozart images with the vectors of (5,5,7) 
and (5,-5,7), where the shapes are normalized to [0,1]. 
 

  
(-1,0,1)   (-5,5,2) 
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Fig. 12 Reconstructed shapes for such illuminant vectors that 
make it hard to obtain good shapes from single shading images. 
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Fig. 13 Rotating images and their illuminant vectors enables 
shape reconstruction, where the estimation is carried out in the 
forward direction after the rotation. 
 
 
 

 
 

 
  

   

 

  
 

Fig. 14 Effects of adding the flat intensity boundaries to the 
original images, where the estimation is carried out in the 
forward direction. Top-left, shape obtained using the 
assumption of p(x=1,y)=0 and q(x,y=1)=0 for the original two 
shading images with S = (5,5,7) and (-5,5,7), top-right, shape 
obtained using the other assumption of p(x=1,y) = p(x=2,y) and 
q(x,y=1) = q(x,y=2) for the same images, bottom-left, shape 
obtained by adding the flat intensity boundaries combined with 
the first assumption, and bottom-right, shape within the original 
shading images. 
 

  
(a) image (-5,-5,7) (b) image (5,-5,7) 

  
(c) shape by wire-frame (front) (d) shape by wire-frame (back) 

  
(e) shape by texture (front) (f) shape by texture (back) 

 

Fig. 15 Shape reconstruction from two synthetic images of a 
computer mouse. (a), (b), shading images, (c), (d), estimated 
shape represented by wire-frame, (e) and (f), that by the texture 
in (a), and front and back views are given for the estimate.

 


