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Abstract We present a comparison of two Kalman
filter frameworks by Ngai, Barron and Spies [1]
and Hung and Ho [6] for recovering depth from
the time-varying optical flow fields generated by a
camera translating over a scene by a known amount.
Synthetic data made from ray traced cubical,
cylindrical and spherical primitives are used in the
optical flow calculation and a quantitative error
analysis of the recovered depth shows our approach
is significantly better.
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1 Introduction

We consider the problem of depth recovery from
monocular image sequences when the 3D camera mo-
tion is either known [6] or recovered from a Motion
and Structure algorithm [3]. Using the assumption
of local planarity, depth can first be computed from
the measured optical flow [1] or from image intensity
derivatives [6] in a Kalman filter framework

There are a number of approaches for computing
depth from optical flow and/or image derivatives in
the literature using a Kalman filter, see [1]. Recent
work has used Kalman filtering as a way to recover
depth values from time varying flow where the cam-
era motion is known [6, 1]. Kalman filtering seems
especially appropriate here as both optical flow and
image differentiation errors seems Gaussian [1].

2 Literature Survey

A complete survey of dense depth recovery methods
can be found in Ngai et al. [1] and a M.Sc. thesis
[2]. We chose to compare our algorithm to Hung and
Ho’s, because their algorithm is very recent (1999),
they seem to obtain very good qualitative results
and we can make good synthetic data approximating
their real data (our cylinder and cube data).

3 Ngai, Barron and Spies

We also assume that the direction of sensor transla-
tion, @, and its rotation, &, are known or can be com-
puted by some other means [3]. In the case where the
true sensor translation U is known, we can compute
the absolute 3D depth map; otherwise we can com-
pute relative depth. Interpolation of surface orien-
tation values at non-pixel image locations is avoided
by assuming local planarity, a seemingly reasonable
assumption everywhere in the image except at depth
discontinuities. We use planarity to avoid having
to compute non-pixel correspondences. Given image
velocity 17(}7, t) we believe it is valid most of the time
to assume the correspondence is at round(? + ¥61)
at time ¢ 4 62.

We consider a setup consisting of a single camera
taking the images while it is moving through a static
3D scene. The standard image velocity equations
[7] relate a velocity vector measured at image loca-
tion ¥ = (y1,92,f) = fﬁ/Xg, [i.e. the perspective
projection of a 3D point P = (X1, X2, X3)], to the
3D sensor translation U and 3D sensor rotation &.
We can rewrite the standard equation for the image



velocity @ = (v1,v2) as ‘U(?,t) = UT(Y,t) + UR(}_},t)
where Uy and Ug are the translational and rotational
components of image velocity:
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ip(Y,t) = Al(?)X and Vr(Y,t) = Ay(Y)d(t),
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We define the depth scaled camera translation as

A(Y) = (

. F(t .
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where 4 = U = (u1, u2, ug) is the normalized direc-
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is the depth scaled sensor speed at Y at time t. We
refer to p as scaled speed (or relative depth). Note
that translational image velocity, ¥, is bilinear in
u and p, making the image velocity equations non-
linear. The focal length f is assumed to be known
via some camera calibration scheme. If we define 2

vectors:
F(Y)=(ri,m) = |F—Ay(Y)d| and  (5)
vy =) = @l

where |f_1’| means each element in the vector is re-
placed by its absolute value. Then we can solve for
p from the image velocity equation, which can now
be written as 7 — cz;u = (r1,7r2) — (d1,d2)u = 0. p has

solutions 7+ or 72 or (best) a weighted average:
<r1|v1| + r2|v2|)
s dz
p= (7)

We use the magnitudes of v; and vy to weight the
calculation: we expect p values computed from the
larger velocity component magnitude to be more re-

lable.

Planar Orientation from Relative
Depth

We are interested in computing the local sur-
face orientation as a unit normal vector, & =
(a1, g, ag) from p values. Consider two 3D points,

3.1

P = (X11, X12,X13) and P, = (Xa1, X22, Xo3),

with images 371 = (%, %, f) and }72 =
(f;(:;l , f)é?,f). If they lie on the same 3D plane
then: .

a- YT Xos
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This equation gives the ratio of the 374 coordinates
(X3) of two 3D points in terms of their image loca-
tions and their planar surface orientation (assuming
they lie on a common 3D plane). From the definition

_ 10l _ _£l01l2 e
of p = 1B = Ty e can write:
U
X3:f||_,||2. (9)
Y12
From the planar equation & - P=a- %37 = c¢ and
using equations (9) and (8) we obtain:
o Y
oy = ol (10)
U2

We can solve for % by setting up a linear system of
equations, one for each pixel in a n x n neighbour-
hood where planarity has been assumed and using a

standard least squares solution method.

3.2 The Overall Calculation

If we assume that @ (or indeed [j) and J are knowns,
we need only concern ourselves with the surface
orientation step of the calculation.

At the initial time, t = 1:

1. Given @ and &, we compute all the p’s as de-
scribed above (see [3] for one way of computing
@ and & from time-varying optical flow).

2. In each n x n neighbourhood centered at a pixel
(2,7) we compute (£)¢ ;) at that pixel using
equations (7) and (10). We call these com-
puted %’s the measurements and denote them
as gu, ;-

3. Given these measurements, we use the g’M(w,) to
recompute the p(; ;)’s as:

(jM(z,j) }7’(21))||[7||2
1Y ,5)ll2

w(i, j) = (11)

The recomputed p values are more “smoothed”
than the actual measurements and better rep-
resent the scene shape. These (i, j) values are
currently the best estimate of the scene’s dense



shape. Note that we can obtain p values for
pixels with no optical flow, these are computed
from the image velocities in its neighbourhood
(which are assumed to result from the same lo-
cal planar patch). If smoothing is turned on,
we apply a median filter to the p(i,7) within
5 x 5 neighbourhoods. This will remove out-
liers. We repeat step 2 except that now instead
of using the measured the u(i,j), we use the al-
ready smoothed p(Z,j) in equation (10). Now
the EM(M) ’s are recomputed, yielding a signifi-
cantly smoother surface.

At time t > 2:

1. Given the measurements or best estimates of
@ and o, we compute pu at each pixel location
and then compute all jM(m‘) ’s in the same way
described above for the new optical flow field.
Using the image velocity measurements at time
t = i, we use the best estimate of surface ori-
entation at time ¢ = i — 1 at location ¥ — @
(At = 1) plus the measurement at Y and its co-
variance matrix to obtain a new best estimate
at Y at time t = i. We do this at all ¥ loca-
tions (where possible), recompute the p values
via equation (11) and output these as the 3D
shape of the scene. Of course, if smoothing is
enabled we also perform that operation.

At time t = 7 we proceed as for time t = 2, except we
use the best u estimates from time t = 2 — 1 instead
of time ¢ = 1 in the Kalman filter updating.

Note that if the true sensor translation U is
known, the absolute 3D depth X3 can be computed
everywhere from the filtered p values:

_ A0l
Al Iz

(12)

3.3 The Kalman Filter Equations

We note here that the components of % in equation
(10) are not independent, thus we have a covariance
matrix with non-zero off diagonal elements in the
Kalman filter equations. [In [3], the components of
all 2D and 3D vectors, @ and & respectively were
treated as 1D variables in the Kalman filter frame-
work.]

If we assume u and & are known, we can compute
at each pixel (4, j) as outlined above, assuming lo-
cal planarity. For the purposes of understanding the
equations below we will subscript symbols with a M
to indicate measured quantities (computed from the
image velocities), P to indicate predicted quantities

o |

and C' to indicate the computed quantities (the cur-
rent best estimates). We use § to denote % It is
a 3D quantity, so we need an initial predicted value
and an initial covariance matrix at time ¢ = 0:

—

EP(IJ) = 0: (13)
co 0 0

Cp(l)j) = 0 oo 0 (14)
0 0 o

This definition of Cp says that initially the coeffi-
cients of ¢ are independent and we have no confi-

dence in their estimates. . o
For each time t = 1,2,3, ... at all pixels (¢, j), we

use equations (7) and (10) to make a measurement
of jM(z i and an estimate of its covariance matrix

CM(,)j)i respectively. Then using the previous best
surface orientation estimate at time ¢ — At at image

location ¥ — ¥At, denoted by (17,77 ), the Kalman
filter equations are computed as follows:

-1
Kaa = Cry- oy [CP(z—,j—) + CM(“J')] o (18)
e = Ire- ;- TG (gMu,j) - gp(r,j—)) {16)
Cc(z,j) = Cp(l_)j_) - K(”j)cP(z—,j—) (17)

Because ¢, i.e. £, can be rotated by sensor rota-

tion, the predicted values jp(z)j) must take this into
account in their update:

R(&at + At)RT(J:t)!jC(,’j)a (18)
(19)

9P,
Creyy = Couye

3.4 Abnormal Situations and Their
Resolution

While tracking individual surface orientations, a
number of situations may arise. It is possible that:

1. When tracking a surface orientation at a moving
pixel, no surface orientation can be computed at
the latest time, in which case tracking stops.

2. A new, untracked surface orientation can be
computed, in which case tracking starts.

3. A surface orientation is tracked to a wrong pixel,
in which case the tracking continues from that
wrong pixel as no error recovery is possible or
detectable.

4. The surface orientations at two different pix-
els with (perhaps) different surface orientations
track to the same pixel, in which case the sur-
face orientations are combined and then tracked
as a single surface orientation (a weighted aver-
age using the covariance matrices as weighting
matrices).



4 Hung and Ho

Hung and Ho’s approach [6] is a recent dense depth
calculation from image intensity derivatives. Hung
and Ho use a direct approach which does not require
the estimation of optical flow as an intermediate
step to recover a dense depth map from a sequence
of monocular images with known camera motion.
They assume a focal length, f = 1, for the camera
model with perspective projection (depth measure-
ments are in f units). In their approach, they first
let I(x, y,t) be the intensity of the image point (z, y)
at time step ¢ in the image sequence and let I, I, I;
be the partial derivatives of I(z,y,t) with respect to
z, y and ¢, respectively. They assume that the image
intensity of corresponding points in the 3D scene is
not changed by motion over the image sequence, then
expansion of the total derivative of the image inten-
sity I(z,y,t) leads to the motion constant equation,
Izu+ Iyv+ I; = 0. Hung and Ho assume a known
camera translational velocity of U= (Uy,Us,Us) and
a rotational velocity of & = (w1,wa,ws). The stan-
dard image velocity equations show the sensor’s mo-
tion can be related to the spatio-temporal derivatives
of the intensity function as follows:

U
A

where § = (=I;,—I,,zI; + yI,) and ¢ = (zyl, +
(1+yH)1,, —zyl, — (1+2*) 1, yl, —x1,). Since both
U and & are known, the depth Z can be estimated
directly from the intensity derivatives using equation

(20):

oy

+§-8=-1, (20)

§-U

7@+ I

Since the camera is moving, the projection of
a 3D point on the image plane will change from
the image point (z,y) at time t to image point
(z+ Az, y+ Ay) at time (¢ + At), where Az and Ay
are image point displacements in the amount of time
At. Let P(z,y,t) = (X(z,9,1),Y(z,y,1), Z(z,y,1))
be the corresponding 3D point of the image point
(z,y) at time step ¢. Then

Z=- (21)

Z(x+ Az, y+ Ay, t + At) = Z(z,y,t)—
(UsAt + w1 AtY (z,y,t) — w2 AtX (2,y,1)).  (22)

Hung and Ho assume local smoothness in the depth
map and use a Taylor series expansion in the first
two arguments of equation (22) to get:

Z(x 4+ Az, y+ Ay, t + At) = Z(z,y,t + At)+

Z Z
8—Ar + a—Ay +e(z,y,t + At),

Oz Oy (23)

where e(z,y,t + At) represents the approximation
error. Equating equations (22) and (23) gives:

Z(z,y,t + At) = (1 — w1 Aty + woAta) Z(x, y,1)—

07 07
UsAt — — Az — — Ay —e(: t+ At 24
3 O T ay Y G(I,y, + )7 ( )
where the perspective projection equations

X(z,y,t) = Z(z,y,t)x and Y(z,y,1) = Z(z,y,t)y
are used under the assumption f = 1. By denoting
Z(t) to be Z(x,y,t) for a fixed image point (z,y),
and replacing ¢ and ¢ + At by k and (k + 1) for the
k' and (k + 1)** image sampling instant, equation
(24) can then be written as:

Z(k +1) = G(k)Z(k) + u(k) + 0(k),

where G(k) = 1 — wiAty + waAte, u(k) =
—UsAt — %Am — %Ay and d(k) is taken to in-
clude —e(z,y,k + 1) as well as the error generated
when estimating the terms %Ar and %Ay in u(k).

(25)

The terms % and ‘?)—Z can only be estimated after
the depth map has attained some degree of smooth-
ness. 6 is approximately a Gaussian random noise
with zero mean and variance ). By introducing a
measurement noise n, with variance R; ! into equa-

tion (20), equation (20) can re-written as:

Yi(k) = Hi(k)Z(k) + ni(k) (26)

where Y1(k) = =5 U and Hi(k)=q¢ J+ 1.

4.1 Incorporating Surface Structure
Hung and Ho’s approach assumes that the depth
Z(z,y) for every particular point (z,y) in the image
has some local structural property among its neigh-
bouring pixels, which can be expressed as:

Z(z,y) = 9(Z(z+p1,y+aq1), ..., Z(x+ps,y+4s))— F,

(27)
where g is a function defined over a mask indexed by
p; and ¢;, (¢ = 1, ..., s) around the image point (z, y),
and F represents permissable variation in the local
surface structure with variance Rg. If the estimated
depths, say Z., of neighbouring pixels are known, an
estimate, say Ya, for Z(z,y) based on this a priori
known structure of the surface can be expressed as:

Yy = g(Ze(l"Fpla y+q1): ey Ze(r+p57y+q5))~ (28)

Let p be the error in estimating Z(z, y) arising from
the replacement of Z by Z, in g() be as follows:

p=g9(Z(x+p,y+aq1),... Ze(x +ps,y+qs))—

1We write Ry, as used by Hung and Ho, rather than the
standard notation ¢ to denote variance.




(a)

Figure 1: Synthetic test data: (a) A marble-texture cube with sides of length 300 with its center located
at (0,0,1500), (b) A marble-texture cylinder with two end spheres of radius 200 and a wall of length 400
with its center located at (0,0,1500) and (¢) A marble-texture sphere of radius 200 with its center located

at (0,0,1300).
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Figure 2: The histogram of the absolute relative errors of the estimated depth values at the 7t% 19%% 27"
and 36" images of the sphere sequence using Hung and Ho’s method [(a) to (d)] and Ngai, Barron and

Spies’ method [(e) to (h)].

g(Z(x+play+ql)::Z(I+p51y+QS)) (29)
Then subtracting equation (27) from equation (28)
yields:

YZIZ(may)‘i'nQa (30)

where ny = E+p. Hung and Ho found during the im-
plementation of their approach that some estimated
depths (e.g. Zc.(z+ 1,y) and Z.(z,y + 1)) are un-
available at the time when the depth at pixel (z,y)
is being updated. In this case, they compute Ya(z, y)
for a pixel (z,y) as follows:

[Ze(m_lay)"i'ze('r:y_l)]' (31)

N | —

Ya(z,y) =

Hung and Ho say this measurement is spatially bi-
ased and may produce effects in propagation of depth
estimates due to the diagonalisation of Y3 values. To
overcome this, each image frame is filtered four times
starting from a different corner of the image each
time and working row by row, producing with four
different versions of Y, say Y3, Y2, Y2 and Y3} That
is, )} is generated by filtering (averaging by equa-
tion (31)) the image from left to right starting from
the top left corner and working down from the top
row to the bottom row; Y;? is generated by filtering
the image from right to left starting from the top
right corner and working down from the top row to
the bottom row; Y3 is generated by filtering the im-
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Figure 3: The histogram of the absolute relative errors of the estimated depth values at the 7t 19** 27"
and 36" images of the cylinder sequence using Hung and Ho’s method [(a) to (d)] and Ngai, Barron and

Spies’ method [(e) to (h)].

age from left to right starting from the bottom left
corner and working up from the bottom row to the
top row; Y, is generated by filtering the image from
right to left starting from the bottom right corner
and working up from the bottom row to the top row.
Note that this final result is dependent on the filter-
ing order in each case. The final estimate for Y5 is
then taken to be:
| 2 3 4
n:zhg+n4dg+n]. (32)
By assuming E and p are independent of each
other, the variance Ry of ns can be computed as the
sum of their variances, Ry = Rg + R,. Rpg is set
to an appropriate value by empirical means in each
particular experiment because it directly controls the
compromise (in the Kalman filter) between the mea-
surement Y7 from the image intensity derivatives and
the measurement Y5 from the surface structural as-
sumption. R, can be expressed in terms of the vari-
ances of the estimation errors in equation (31). Thus,
since from equations (29) and (31),

p= 32— 1,9
2 —1,9) + (Ze(w,y— 1) = Z(z,y — 1))], (33)
we obtain:
R, = 3[P(x—1y)+Ply-1], (39

where a is a factor to compensate for any under-
estimation of R, due to the surface structural as-
sumption. By empirical means, a suitable range for
a is found to be between 1.6 and 2.0 inclusively.

4.2 The Kalman Filter equations

With the extra measurement Y3, equations (26) and
(30) can be combined to give:

Y = HZ +n,

[ = [ e = 2]
(36)

The covariance matrix R of n is defined as:

R = var(n) = diag(Ry, Rs).

(35)

(37)

Based on equation (35), the set of Kalman filter
equations for generating an estimate Z.(k) for the
depth Z(k) in Hung and Ho’s approach is then given
by as follows:

ZZ(k) = Gk—1)Zo(k— 1)+ u(k — 1), (38)
P (k) = Gh-DPk-DGTk-14+Qk-1), (39)
K(k) = P~ (k)HT(k) [H(k)P—(k)HT(k)+R(k)]‘1g4o)
Ze(k) = ZZ2(k)+K&)Y(k)—- H(k)Z_ (k) and  (41)
P(k) = P7(k)- K(k)H(k)P™(k), (42)

where Z; (k) is the predicted depth at image sam-
pling instant k before the arrival of the k-th measure-
ment, P~ (k) and P(k) are the variances of Z_ (k)
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Figure 4: The histogram of the absolute relative errors of the estimated depth values at the 7t 19** 27"
and 36" images of the cube sequence using Hung and Ho’s method [(a) to (d)] and Ngai, Barron and Spies’

method [(e) to (h)].

and Z(k), respectively, and K (k) is the Kalman fil-
ter gain. At k = 0, variables can be arbitrarily ini-
tialized (we use Hung and Ho’s values).

5 Generation of Synthetic Test
Image Sequences

For the experiments, we use synthetic images be-
cause that allows for a quantitative error analysis
on the estimated depth values. We generate a 30
image sequence of 512 x 512 images using each of
three different 3D objects: a sphere, a cube and a
cylinder (Figures la, 1b and 1c). For each exper-
iment, a sequence of images of one of these three
objects is generated while the synthetic camera is
moving in a known way and the object is rendered
by perspective projection onto the image plane. In
all the experiments we performed, all the image se-
quences were generated using a camera translation of
(1,1,0) with a focal length of 1000. All the objects
have a marble texture to facilitate optical flow com-
putation. Although the synthetic images themselves
are error free, the optical flow computed using them
is not [1]. All the objects have a marble texture,
allowing optical flow to be computed easily because
the high variation in local image intensity structure
attenuates the aperture problem.

6 Experimental Results and

Discussion

Error was measured for relative depth g using the ex-
act p values: hence the use of the term absolute rel-
ative error. Optical flow was computed using Lucas
and Kanade’s algorithm [5] with differentiation per-
formed as proposed by Simoncelli [8]. All the figures
(2 to 4) show the error histograms for the 7t 19t
27" and 36" frames for the 3 objects. For Hung and
Ho’s method, Gaussian smoothing was incorporated
into the Kalman filter after the 19'* frame. Figure
2 shows the histograms of the error distribution for
the sphere data while Figure 3 shows the histograms
of the error distribution for the cylinder data and,
finally, Figure 4 shows the histograms of the error
distribution for the cube data. Note that at depth
discontinuities, where the local planarity assumption
is definitely violated, no depth is recovered as the
Kalman filter rejects those values as unreliable. This
also supposes image velocities can be computed at
depth discontinuities. Normally Lucas and Kanade
optical flow does not yield velocity values at discon-
tinuities.

Table 1 shows the average absolute relative error
for the 3 objects for a number of ranges. The quan-
titative error results show Ngai, Barron and Spies;
results are better in all cases. The results for the
sphere (the most curved objects) show the least im-
provement (but they are still better). A qualitative



Percent Relative Error >15% | 5% - 15% | <5% >15% | 5% - 15% | <5%
Algorithm Hung and Ho Ngai, Barron and Spies
Tth depth map (Sphere) 70.72% 18.42% 10.86% || 67.51% 19.99% 12.50%
19th depth map (Sphere) 40.96% | 35.40% | 23.64% || 64.04% | 21.84% | 14.13%
27th depth map (Sphere) 7.33% 65.02% 27.65% || 58.02% 23.76% 18.23%
36th depth map (Sphere) 15.18% 68.15% 16.67% || 58.03% 23.96% 18.01%
Tth depth map (Cylinder) 66.91% | 20.33% | 12.76% || 48.84% | 29.96% | 21.20%
19th depth map (Cylinder) || 33.26% 38.03% 28.71% || 37.46% 33.56% 28.98%
27th depth map (Cylinder) || 21.70% 62.39% 15.91% || 33.45% 32.98% 33.57%
36th depth map (Cylinder) || 43.11% 50.21% 6.68% || 31.01% 33.74% 35.25%
Tth depth map (Cube) 70.69% | 18.54% | 10.78% || 43.21% | 34.65% | 22.14%
19th depth map (Cube) 37.20% | 36.48% | 26.32% || 26.23% | 41.28% | 32.48%
27th depth map (Cube) 29.64% 60.44% 9.92% || 17.62% 41.34% 41.04%
36th depth map (Cube) 58.30% | 36.52% 5.18% || 16.10% | 40.10% | 43.80%

Table 1: The percentage of the estimated depth values that have certain absolute relative errors in the
experiments for the sphere, cylinder and cube, using Hung and Ho’s and Ngai, Barron and Spies’ algorithm,

both with smoothing after the 19th frame.

examination of depth values for the 2 methods shows
that the magnitudes of the depth values for Hung and
Ho’s method tend to get smaller overall as the frame
number increases (after smoothing has been incorpo-
rated): this effect shows up by the error distribution
peak moving slightly to the right, as can be seen in
the Hung and Ho histograms in Figures 2, 3 and 4.
This effect is under active investigation.

7 Conclusions

We have presented a new algorithm to compute
dense accurate depth using a Kalman filter frame-
work [1] and showed superior performance to that
of Hung and Ho [6]. If we turn on smoothing at
the 7'* rather than 20** frame, our results become
marginally better still. We need to test our algo-
rithm for camera motions including rotation and to
use real data (preferably with ground truth). Lastly,
we plan to integrate this algorithm into the Kalman
filter based motion and structure algorithm designed
earlier [3].
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