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Abstract

Undoubtedly the correspondence problem is one of
the most important problems in computer vision.
This paper describes a simple modification of one
standard algorithm to identify pairs of feature points
in two images which belong to the same scene point.
Without directly using any standard constraints,
typically 90 to 100 percent of the obtained matches
are correct. Even more impressive, almost no cor-
respondences are found in images not showing the
same scene. Key to the success of the new method
is the introduction of the uniqueness of a feature.
The uniqueness of a feature is a global attribute of
a feature and together with the corresponding local
description creates a powerful discrimination tool. It
is proposed to replace the standard uniqueness and
symmetry constraint by this measure. We also give
a general derivation of our approach, where the pro-
posed algorithm is divided into an algorithm and a
“meta algorithm”. This meta algorithm simulates
the first algorithm and gains thereby insights of its
applicability and its optimal parameters.
Keywords: Image registration, feature matching

1 Introduction

Undoubtedly the correspondence problem is one of
the most important problems in computer vision.
For many applications it is important to identify cor-
responding points in a pair or a set of images. Uncal-
ibrated stereo or 2D image mosaicing (e.g [15], [16])
are not the only examples, others include also object
recognition ([8],[3]).

One problem of correspondence algorithms is typ-
ical of many computer vision algorithms: Parameters
and thresholds have to be determined heuristically.
Further, the optimal parameters are dependent on
the input.

The algorithm presented here will determine its
parameters to a certain degree automatically depen-
dent on the input. We will also give a recipe, how

automatic threshold and parameter selection could
be included in other algorithms.

Finding corresponding features at first requires
extraction of features. One well known approach is
to extract small windows (templates, patches) of a
given size around points found by an interest oper-
ator. Such an interest point operator ensures, that
the selected points are locally distinct. The hope is
then: These features are distinct enough, such that
they can be discriminated from other ones also glob-
ally.

The problem is now to find the correspondences
between the features of two images. First, a pair of
features is said to form a candidate pair, if a similar-
ity measure between them exceeds a certain thresh-
old. As experience shows, a lot of these candidate
matches are wrong, if the threshold is too large. But
if the threshold is too small, a lot of correct matches
don’t pass the test.

A lot of research has been spent in developing
robust methods to determine the right matches from
a candidate set. These methods can be subdivided
into imposing constraints, local support and robust
estimation of the scene geometry.

The most important constraints are uniqueness
(one feature can have only one match) and symme-
try (if X matches Y, then Y has to match X). These
constraints are of course physically well founded.
They are not explicitly contained in our approach,
although in a certain sense they are the base of it.
In fact, we propose to replace these constraints by
the method presented in this paper.

The second method (local support) assumes, that
other compatible matches have to exist in the neigh-
borhood of a correct match. A relaxation procedure
can be used to discard matches, which are isolated
in this respect.

The third method, robust estimation of the scene
geometry (e.g. the epipolar geometry) is used to
check the consistency of the matches and then to
establish many more matches. It is not quite clear,



whether this step still belongs to the feature match-
ing pipeline, since often the estimation of the scene
geometry is the goal per se. Nevertheless, methods
like RANSAC can estimate the geometry despite a
large fraction of outliers. But undoubtedly, they per-
form better and faster with a low percentage of out-
liers.

The literature on this topic is immense, all three
methods are covered in [15]. A recent empirical eval-
uation of the mentioned constraints and other ones
is given in [14]. Other research contains methods
working on the candidate pairs or methods for ex-
tracting features being invariant to e.g. rotation or
affine transformations (e.g. [9],[5],[10],[3],[13]).

The method proposed in this paper describes a
step between feature extraction and establishing can-
didate pairs. It consists of assigning each feature a
uniqueness with respect to the whole set of features
of one image. This measure can then be used in two
ways. First, an individual threshold can be deter-
mined for each feature. Second, a representation of
that feature can be chosen, such that the uniqueness
is high.

The uniqueness of a feature will be introduced
in section 2. A feature matching algorithm using
the uniqueness is proposed in section 3. Section 4
defends the algorithm against only being a heuris-
tic by giving an interpretation of the algorithm as
one algorithm simulating another one and yielding
a context-dependent algorithm as result. Finally we
present some results and compare them to the state-
of-the-art technique.

2 The uniqueness of a feature

We will now introduce the uniqueness of a feature
independent of a special representation or a spe-
cial measure. It is assumed, that a distance d be-
tween two features is given, whereas a small distance
denotes a high similarity. Given a set of features
S = {f;} the uniqueness of a feature f € S with
respect to S is defined as:

unique(f,S) = min{d(f,£;)|f; € S,f #£:}. (1)

The uniqueness is therefore the minimum dis-
tance to another feature of the set. A feature with
a high uniqueness is intuitively easier matched than
a feature with a low uniqueness, because it is not
only salient in a small neighborhood, but also in the
whole set.

A simple strategy to establish matches is now
to consider only feature pairs, where the distance is
smaller than the uniqueness. This way, a lot of fea-
tures can be discarded even before trying to match

them by requiring them to have a high uniqueness
value. Further, if there are several representations
available, the representation with the best unique-
ness can be chosen as appropriate.

3 The algorithm

In the matching algorithm presented here, the fea-
tures are small image patches of size (2n+1) x (2n+1)
around interest points. In the following all sums are
taken over such a patch, whereas each pixel’s inten-
sity is denoted by I. Interest points are identified
in the following way([6],[11]): For each possible im-
age patch, the values of the spatial derivatives of the
patch are collected in the matrix

< LI, Y I, >
YL, o1y,

If the smaller eigenvalue of this matrix is large
enough, the patch is selected. We simply take the
500 patches having the largest values.

Two patches can be compared using the zero-
mean normalized cross-correlation (NCC): First, the
intensity values of the patches are replaced by I —1I to
have an average of zero, then the vector of the values
is normalized to have a length of one and then

NCC=> NL. (2)

This measure is extended canonically to work on
RGB-values.

Since the NCC' returns a value between 1 and
—1 with higher values meaning lower distance, we
use (1 — NCC) as distance:

uniqueyco(f,S) = min{1-NCC(f, fi)|fi € S, f #(fz’)}-
3

A pair of features f; € S1, f2 € S2 of two different
sets Sp, S3 now match if their distance is both smaller
than an absolute threshold and a certain amount
smaller than their uniqueness.

We use minimum NCC of 0.7 here, which is a
relative low value (Values between 0.8 and 0.9 are
standard values for matching). The only requirement
is here, that as many as possible correct matches pass
this test. The second requirement can be expressed
by the following two conditions:

1 —NCC(f1, f2) < uniqueye(fi,S1)—7 (4)
1 —NCC(f1, f2) < wuniquey(fe,S2)—71 (5)

A good choice for 7 is around 0.2, as will be shown
in the experimental results. The algorithm allows
therefore some features to match with a very low
threshold (0.7), while some features (e.g. a feature
with a uniqueness of 0.1) cannot match at all.



We call the difference between the uniqueness and
the distance the confidence of a match:

conf(fi, f2) = (6)
min(uniquegee(fi, S1), wnidueggg(fo, 52)) —

(1 —NCC(f1, f2))-

Equations 4 and 5 can then be expressed by

conf(fi, fo) > 7 (7)

Our results will show, that this confidence score
has much more influence than the NCC-score.

This algorithm is now executed for several choices
of the window size n and even for several resolutions
of the image by down-scaling the images. By cal-
culating the uniqueness, the best features of every
combination will be determined automatically.

Our approach can be seen as a natural extension
to the interest point operator. This operator guar-
antees the uniqueness of a feature in a small neigh-
borhood, our notation describes the uniqueness with
respect to the whole image.

Some experimental results will be given in section
5. But first, we give an explanation of the algorithm
as one algorithm simulating another one.

4 The meta algorithm -
Context-dependent reason-
ing about algorithms

We would like to see the algorithm in the sense of
a meta algorithm simulating another algorithm. To
show the idea, we first divide the algorithm in two
parts. One algorithm (A), that is known to be able to
do some task in some context. Second, an algorithm
(B), that simulates the first one and determines from
the result of the simulation, whether:

1. The algorithm is appropriate in the global con-
text.

2. If yes, which parameters / thresholds / repre-
sentations are appropriate.

The algorithm A is in this case simply the follow-
ing:

if NCC(f1, f2) > a then (f1, f2) is a match.

where a is a threshold. Possible parame-
ters/representations are the window size and the res-
olution of the image. To allow the simulating algo-
rithm B to simulate A, B needs somehow a model,
on which to run A. The acquisition of such a model

may be difficult in general, but is easy in this case.
The image itself is a good model of what is to be
expected. And one thing is sure: Each pixel in the
image is the projection of a different world point.
This insight can be seen as a variant of the unique-
ness constraint applied to only one image. So if B
detects, that A finds a match for a pair of features
for a certain threshold a, this match is for sure wrong
and therefore the combination of threshold/window
size/resolution is not appropriate in this context. On
the other hand, if B detects, that A finds no match
even for a very low threshold a, it can state, that this
feature is likely to be matched correctly, even with
a low threshold . For some images, no features at
all will be classified as potentially good, so the result
is: The algorithm is not appropriate at all for this
image.

This simulation naturally depends on the quality
of the internal model. While the simulation will be
better, the better the model is, a model will never
represent all aspects of reality. One solution of that
problem is to represent the result of the algorithm by
a continuous measure like the confidence. But this
is not possible for discrete decisions, that are part of
the algorithm. To overcome this problem, the valid-
ity and the usefulness of the result can be improved
by simulating the algorithm with softer overall con-
ditions. In this way the simulating algorithm has
more possibilities to produce errors. Errors, which
could in reality also be caused by imperfect models.
We apply this idea the following way: The extrac-
tion of interest points is a step, where such discrete
decisions are taken. If one point is selected in one im-
age (because his interest point score is just above the
threshold), and the corresponding point in a second
image is not selected (because his point of interest
score is a little bit under the threshold), errors are
likely to occur. To model this error source to some
extent, we use now two thresholds: A lower one for
the calculation of the uniqueness, and a larger one
for establishing matches.

5 Experimental results

The algorithm has been tested on a collection of sev-
eral hundred images. The result of the algorithm
is used in a larger framework to stitch a set of im-
ages fully automatically (as far as possible) to a
panorama. For this reason most of the test image
sets consist of images taken from a common view-
point.

In our application, no prior information about the
connectivity of the images is given. A key goal for
the algorithm is therefore to deliver a lot of matches
when applied to images with significant overlap, and



fewer or no matches when applied to images that do
not overlap.

Figure 1: Images 4,5 and 11 of the sequence City

Our test set presented here (23 images, Figure 1)
shows a city scene containing a large building with
a lot of similar structures like windows. The images
have here a size of 320 x 256.

The algorithm was run with image patch sizes of
7x7,9x9and 11 x 11 at five different resolutions.
Each resolution was calculated by down-sampling the
previous resolution by a factor of 1.5. The maximal
number of features for each combination of patch size
and resolution was set to 500. All features were used
to calculate the uniqueness, but only the 80 percent
with the highest interest point score were used to
establish matches (as explained in the last section).

To count the correct matches, the following
method was used. We registered the images using the
results of the algorithm, intensity-based optimization
([12]) and manual interaction (if necessary) using a
pinhole camera model. The test sequence mapped
onto a cylinder is shown in figure 2. This registra-
tion was used to subdivide the matches into correct,
inexact and wrong.

Since the photos were taken handheld and some-
times small camera movements occurred, some
matches, which are visually correct, are some pixels
away from the position calculated by the estimated
mapping; these are the inexact matches. We count
correct matches therefore this way: All matches with
distances smaller than 2 pixels in their corresponding
resolution are counted as correct. Otherwise, if the
distance is smaller than 5 pixels in total, the match is
not counted at all (neither as correct nor as wrong).
All other matches are counted as wrong.

Results are shown in three formats answering the

three important question: How many of the matches
are good in percent, how many matches are good
in total and how many matches are wrong. For the
following plots, the minimum NCC-score (NCC) was
varied from 0.7 to 0.95 and 7 was varied from —0.3
to 0.4. A value of 7 of —0.3 is nearly equivalent to
not using the uniqueness of the features at all.

Figure 3 gives an impression of the results of the
algorithm. Here 7 = 0.2 and nearly all matches are
correct. Figures 4 show the results of applying the
algorithm to the complete image sets. That is, each
image is compared with each other, in total 276 com-
parisons. The majority of the comparisons is there-
fore between images not showing the same scene.
Here the impact of the algorithm is striking: With
a minimum NCC of 0.9, and 7 = —0.3, there are
only 35 percent of correct matches, whereas with a
minimum NCC of 0.7 and 7 = 0.17 90 percent are
correct. Figure 5 shows the effect of 7 for two differ-
ent settings for the minimum NCC (0.7 and 0.9) in
this test.

Figure 3: Found matches for 7 = 0.2.

Figure 6 shows the result of running the algorithm
on image pair 4/11 of the sequence city. These im-
ages have no overlap and so all found matches are
wrong. For a minimum NCC of 0.9, there are still
176 matches. In contrast, the highest occurring con-
fidence score is 0.17, and for 7 = 0.1, there are only



Figure 2: Stitched sequence City mapped onto a cylinder
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Figure 6: Result of comparing images 4 and 11 of the
sequence city, which have no overlap, so all matches
Figure 4: Result of comparing each image of the se-  are wrong.
quence city with each other.




eight matches.

Correct | Wrong | Ratio

U+C 52591 128657 | 0.29

U+C+D 43462 20874 0.68

Min Conf 0.1 20640 3472 0.85

Min Conf 0.2 7095 393 0.95

Min Conf 0.3 1681 41 0.98

Min Conf 0.1 + U+C+D | 19781 1508 0.93
Min Conf 0.2 +U+C+D 7095 393 0.95
Min Conf 0.3 +U+C+D 1681 41 0.98

Figure 7: Comparison of the proposed algorithm to
other aproaches. U and C stand for applying Unique-
ness and Symmetry constraint. D stands for apply-
ing a Disparity gradient constraint. Opposed are the
results of requiring a minimum confidence. For this
comparison, we used a minimum NCC of 0.8.

The outcomes of our experiments show, that the
confidence score is dominant for the probability of a
correct match. Certainly, from figure 4 or 5 it can
also be seen, that the correlation score has an influ-
ence. For sorting the matches, both values should be
taken into account. A possibility is here to take the
probability values of the results our test sets (e.g.
simply the probability distribution of 4) as a mea-
sure. Such a distribution is different for different test
sets, but the differences are small and the structures
are similar.

We have shown up to now, that the results are
good, but how do we perform compared to tradi-
tional methods? For a comparison, we have selected
the classical symmetry and uniqueness constraint
(as mentioned in the introduction). Additionally,
we have implemented a disparity gradient constraint
with parameters as proposed in [14]. The idea here
is, that proximate points in the image should have
similar disparities. The disparity gradient of two
matches (f1, f2) and (f], f}) is defined as

A = |d(f17f2) _d(fiafé”,

d(ml, ’ITL2)

(8)

where d is the euclidian distance and m; (ms) is the
midpoint of f; and f| ( f2 and f}). This measure is
now used in a constraint, that accepts a match if it
shares the disparity gradient with at least 3 of its 5
closest neighbors using a thresholds of 0.4.

We ran the algorithm again on the whole image
set using a minimum NCC' of 0.8 and the mentioned
constraints. The results are shown in figure 7. Ap-
plication of all three constraints yields a result of
68 percent correct matches. In contrast, requiring a
minimum confidence of 0.1 yields a result of 85 per-
cent correct matches, but at the cost of having only

half the number of correct matches in total. Appli-
cation of the uniqueness and symmetry constraint
together with requiring a minimum confidence does
not improve the result, because these constraints are
already contained implicitly. However, the disparity
gradient helps for matches with confidences smaller
than 0.1, showing that it is a concept being relativly
orthogonal to our approach.

Though we have tested our approach only on a
small set of stereo pairs, the algorithm should be
equally useful in this case. Figure 8 shows the results
on an example stereo pair.
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Figure 8: Results on a stereopair (from [7],chapter
10). Shown are the correspondences for 7 = .2 (mid-
dle) and 7 = .3 (bottom).

6 Conclusions

The results shown here are representative for all our
test sets and show the robustness of the approach in



difficult environments with a lot of similar structures,
where other algorithms could fail. The price to pay
is, that sometimes few matches or no matches at all
are found. For natural scenes, a really surprising
number of features with high uniqueness are found
(much more than in the test set presented here).

We want to emphasize two general advantages
of our approach: First, our notion of uniqueness
and confidence describes a continuous measure, op-
posed to a constraint, which is a discrete measure.
This enables us to sort matches according to their
confidence, which is useful for RANSAC. Secondly,
the uniqueness can be calculated on a single image,
opposed to the uniqueness and the symmetry con-
straint, which is calculated on a set of candidate
matches. This is useful, if an image has to be com-
pared with several other images, since the computa-
tions have to be done only once.

The meta-algorithm given in section 4 gives an
explanation for the good results on image pairs show-
ing the same scene. For the apparent ability of the
algorithm to discriminate between different scenes,
this is of course no explanation. The key to this
success is maybe the combination of a local descrip-
tion (the RGB values of the image patch) with a
global property (the uniqueness). Together with the
uniqueness, the image patch codes not only a local
appearance, but also the absence of a lot of similar
patches. The more unique a feature is, the larger
is the subspace of all possible image patches, which
can occur only once. An interesting fact is, that
the representation of the image patch is very high
dimensional, while the representation of the global
property is only one dimensional.

We implemented a tool to automatically stitch
a panorama from a set of images without any prior
information. The algorithm presented here is the
central part of this tool. For example the test set
shown in the experimental results was stitched au-
tomatically except for closing the panorama, which
had to be done manually.
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