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Abstract 
 
This article introduces the Normalized F-Statistic (NFS), a 
measure for comparing estimates of the fundamental 
matrix.  As opposed to other measures commonly used for 
comparison, such as the Frobenius norm of the difference 
of the estimates, and the RMS or mean squared error 
between points and their corresponding epipolar lines, the 
NFS yields a measure of confidence that one estimation 
technique is superior to another.  This confidence measure 
is useful in comparing the performance of two techniques 
with respect to a specific image or to draw general 
conclusions about their relative performances. 

 
1. Introduction 
 
1.1 Overview 
 
This article introduces the Normalized F-Statistic (NFS), a 
measure for comparing estimates of the fundamental 
matrix (the  3 � 3 matrix that describes the epipolar 
geometry of two images).  Section 1 will briefly describe 
epipolar geometry and mention some of the measures that 
have been used in previous research to compare 
fundamental matrix estimates.  In Section 2, the NFS is 
derived using the classical assumption of independent and 
identically distributed normal errors in the location of 
corresponding points.  Some computational considerations 
are detailed, and the derivation is extended to handle 
corresponding points with heteroscedastic errors.  Section 
3 illustrates the use of the NFS to compare four standard 
fundamental matrix estimation techniques applied to 102 
pairs of real images.  Finally, in Section 4, some 
conclusions about the efficacy of the NFS are drawn from 
the results of Section 3. 
 
1.2 Epipolar Geometry 

 
Epipolar geometry describes a natural constraint that arises 
when two images of the same scene are captured.  
Consider a real world point M  captured by a camera with 
optical center C  and another camera with optical center 
C � , as shown in Fig. 1: 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Epipolar geometry. 
 
If M  is projected onto image I  at location m , the 
projection of M  onto I �  (denoted m� ) must fall on the 
epipolar line ml�  (the intersection of I �  with the plane 
containing m , C  and C � ).  Conversely, if M  is projected 
onto image I �  at location m� , the projection of M  onto 
I  (denoted m ) must fall on the epipolar line ml �  (the 
intersection of I  with the plane containing m� , C  and 
C � ).  Because the epipole e�  is the projection of C  onto 
I � , all epipolar lines of points in I  must pass through e� .  
Similarly, all epipolar lines of points in I �  must pass 
through the epipole e . 

The fundamental matrix is a 3 � 3 matrix F  that 
projects a point m  in homogeneous coordinates (i.e., 

� �Tm 1,, vu� ) to its epipolar line.  That is, Fmlm �� .  
Because the epipolar constraint ensures that m�  lies on ml�  

(or 0��� m
Tlm ), it must be true that 

 0�� Fmm T . (1) 
Transposing Eq. (1), we find that TF  is the fundamental 
matrix when the role of the two cameras is reversed.  By 
the geometry illustrated in Fig. 1, we can see that the 
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epipolar line el�  of the epipole e  reduces to a point; 
therefore, we have: 
 0Fele ��� . (2) 
and, conversely, 
 0eFl T

e ���� . (3) 
From Eqs. (2) or (3), it is clear that F  has, at most, 

rank 2.  (In general, the rank of F  will be equal to 2.)  It is 
also clear based on Eqs. (1)-(3) that F  is unique only up to 
a scale factor.  Hence, F  has seven independent 
parameters.  It is therefore possible to determine F  exactly 
given seven (nondegenerate) sets of corresponding points.  
In many instances, more than seven point correspondences 
are known, so some estimation strategy that optimally fits 
the point correspondences must be applied.  A variety of 
estimation techniques have been developed based on 
minimizing algebraic error, geometric error, covariance 
weighted error, and Sampson error [1]-[7].  If some of the 
point correspondences are mismatched, we can use robust 
statistical estimation techniques [8], [9]. 
 
1.3 Previous Work 

 
Several measures have been used in the research literature 
to compare two estimates of the fundamental matrix (or to 
compare an estimate with the “true” fundamental matrix).  
Zhang [6] describes a few such measures, including the 
Frobenius norm of the difference between the two 
fundamental matrix estimates, the RMS distance between 
points and their corresponding epipolar lines, and an 
estimate of the average distances between randomly 
chosen points and their corresponding epipolar lines, 
computed by treating the two images symmetrically.  Chesi 
et al. [1] use the mean distance between points and their 
epipolar lines.  Luong and Faugeras [5] measure the 
relative error between coordinates of the epipoles of 
estimated and true fundamental matrices in order to 
quantify the sensitivity of the estimation technique.  

As illustrated empirically by Zhang, it is clear that 
measuring the difference between fundamental matrix 
terms in the Frobenius norm (or in any norm) does not 
necessarily relate to a similar difference according to any 
geometric criterion.  The methods that measure average or 
RMS distances between points and their corresponding 
epipolar lines do report a more geometrically meaningful 
number.  However, making a direct comparison between 
two different fundamental matrix estimates, based on 
determining which estimate has the lesser measure, is akin 
to comparing two probability distributions solely based on 
which one has the lesser mean.  A more appropriate 
comparison measure should include some notion of the 
confidence that one fundamental matrix estimate is 
superior to another. 
 
 

2. The Normalized F-Statistic 
 
2.1 Deriving the NFS 

 
The benefit of the Normalized F-Statistic (NFS) over other 
measures of comparison is that the NFS relays a measure 
of the confidence that one fundamental matrix estimate is 
superior to another.  To derive the NFS, we must first 
consider the distribution of the distance from points to their 
corresponding epipolar lines.   

Slightly modifying the notation of Section 1.2, 
consider that N  corresponding point pairs, 
� �� �Niii ,,1,, ���mm  are observed, where im  is a point in 

image I , and im�  is the corresponding point in image I � , 
and all points are represented in homogeneous coordinates.  
Under the classical assumption, the observed 
corresponding points differ from the true corresponding 
points by i.i.d. normal random noise in the image plane; 
i.e., iii εmm ��

~  and iii εmm �����
~ , where � �ii mm �

~,~  is the 
true corresponding point pair, and iε  and iε�  are i.i.d. with  
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(The heteroscedastic case will be considered later in this 
section.)   

If we consider 1F  and 2F  to be estimates of the 
fundamental matrix, the distance from a point in image I  
to its corresponding epipolar line is given by: 
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Expanding and substituting, we have: 
 � ���ijid mFm T,  

 ijiijiijiijijik εFεεFmmFεmFm TTTTTTTT
�������

~~~~
, , (6) 

where 

 
� � � �2

2

2

1

,
1

ijij

jik
mFmF TT
���

� . (7) 

Therefore, a first order approximation yields: 
 � � ijiijiijijiiji kd εFmmFεmFmmFm TTTTTTT

�������
~~~~, , . 

  (8) 
From Eq. (4), and using properties of the multivariate 
normal distribution, we find that 

εFmmFεmFm TTTTTT
����� jiijiiji

~~~~  is a normally distributed 

random variable with mean iji mFm TT
�

~~  and variance  
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Hence, � � � �2,,
2

, jijiiji kd �mFm T
�  has approximately a 

noncentral chi-square distribution with one degree of 
freedom and noncentrality parameter  

 � � 2
,

2
,

~~
jiijiji �� mFm TT

�� . (10) 
Now, if we consider separate pairs of corresponding 

points to be independent of one another, 
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has approximately a noncentral chi-square distribution with 
N  degrees of freedom and noncentrality parameter  

 �
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N

i
jij

1
,�� . (12) 

The ratio 12 SS  therefore has approximately a doubly 
noncentral F-distribution [10] with parameters 
� �12 ,,1,1 ���� NN .  We use this result to define the NFS: 
 � �ijNNji SSHNFS

ij �� ,,1,1, ��
� , (13) 

where � �xH ddnn 2121 ,,,  is the cumulative distribution 

function of the doubly noncentral F-distribution with 
parameters � �2121 ,,, ddnn , evaluated at x . 

The NFS can be interpreted as a confidence level at 
which we can reject the hypothesis that both fundamental 
matrix estimates yield similar errors.  Therefore, the closer 
the NFS 2,1�  is to one, the more probable it is that 1F  is 
the better estimate.  The closer the NFS is to zero, the more 
probable it is that 2F  is the better estimate.  The closer the 
NFS is to 0.5, the more probable it is that neither estimate 
is better than the other. 
 
2.2 Computational Considerations 
 
Clearly, the NFS cannot be computed exactly, because 
Eqs. (9) and (10) require the unknown locations of true 
corresponding points.  Without knowledge of the 3-D 
positions of points in the original scene, the best one can 
do is approximate the true image positions.  We suggest 
three different approximations, each with their own 
advantages and disadvantages. 

One possibility is to approximate the true locations 
with the observed locations; i.e., ii mm �

~  and ii mm ���
~ .  

This approximation does have precedent ( jS  becomes 
exactly the gradient criterion described in Luong and 
Faugeras [5]); however, in forcing the assumption that all 
observed locations are true, the NFS is no longer a valid 
measure because the variance of the observation errors is 
zero by definition. 

Another possibility is to apply the Gold Standard 
method of fundamental matrix estimation [4] to the 
observed point correspondences.  The Gold Standard 

method, in addition to estimating the fundamental matrix, 
also yields estimates of the true corresponding point 
locations.  The disadvantage to this approximation is that it 
assumes the Gold Standard produces a reliable 
fundamental matrix estimate (of which there is no 
guarantee), at least with respect to the estimates under 
comparison. 

A third possibility is to approximate the true point 
locations with the orthogonal projection in the image plane 
of the observed point onto its corresponding epipolar line: 
 � � ii iii

muuUIm T
mmm ��� ���

~ , 

 � � ii iii
muuUIm T

mmm ��������
~ , (14) 

where 
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The disadvantage to this approach is that “true” point 
locations depend on the fundamental matrix estimate, so 
they will be different for the estimates under comparison.  
However, this approach does have the advantage that it 
centralizes the doubly noncentral F-distribution, because 

ji,�  becomes identically zero for all i  and j .  This, in 

turn, guarantees that the NFS satisfies ijji NFSNFS ,, 1�� , 
which is a very useful property because it enables a 
symmetric interpretation. 
 
2.3 The NFS with Heteroscedastic Data 
 
In the derivation of the NFS, we assumed that the noise 
added to true corresponding point locations was 
independent and identically distributed, according to Eq. 
(4).  Frequently, this assumption is too simple.  As a result 
of a variety of factors, such as depth of points in the scene, 
nonstationary blurring of the image, orientation of points 
along edges or corners in the scene, etc., it may be more 
prudent to model the errors as normal random variates, 
each with their own covariance matrix.  That is, let iε  be 
multivariate normal with mean 0  and covariance matrix 

i� , and let iε�  be multivariate normal with mean 0  and 
covariance matrix i�� .  (We will still assume that iε  and 

iε�  are independent).   



Under this general model, the variance 2
, ji�  from Eq. 

(9) becomes: 
 ijijiijijiji mFFmmFFm TTTT �������

~~~~2
,� .  (15) 

Therefore, jS  is computed as in (11), but with 2
, ji�  given 

by (15).  The NFS is then computed as in (13). 
 
3. Results 
 
3.1 Case 1: Church 

 
The church sequence, shown in Fig. 2, and developed at 
INRIA [11], comprises 12 images of a church, the first ten 
of which are captured at approximately 8º intervals around 
the church by a handheld camera, and the remaining two at 
some spurious positions. 

 

    
 

    
 

    
 

Figure 2: Church sequence of images. 
 
Typically, an arbitrary pair of images from this 

sequence differs by some amount of rotation of the camera 
about the church.  In the induced epipolar geometry, both 
epipoles should lie outside the borders of each image.  For 
example, Fig. 3 shows church images #6 and #8 with 
epipolar lines that were computed after estimating the 
fundamental matrix from a collection of manually supplied 
correspondence points. 

    
 

Figure 3: Church images #6 and #8 with epipolar lines. 

 
As can be seen from Fig. 3, the epipole, or intersection 

of the epipolar lines in the image plane, in image #6 lies to 
the left of image #6, and the epipole in image #8 lies to the 
right of image #8. 

For each of the 66 combinations of pairs of church 
images, corresponding points were manually labeled.  
Using these corresponding points, the fundamental matrix 
was estimated via four standard techniques: Hartley’s 
Eight-Point Algorithm [3], minimization of the distance to 
epipolar lines [5], minimization of the gradient criterion 
[5], and Least Median of Squares [6].  The NFS is 
computed in order to compare each of the six pairs of 
estimation techniques for each pair of images, and the 
results are plotted in the following figures.  The weight 
used is that of Eq. (9), and the approximation to the true 
corresponding points is that of Equation (14). 
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Figure 4: NFS (Hartley, DIST): Red X 

NFS (Hartley, GRAD): Blue O 
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Figure 5: NFS (Hartley, LMS): Red X 

NFS (DIST, LMS): Blue O 
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Figure 6: NFS (GRAD, LMS): Red X 

NFS (DIST, GRAD): Blue O 
 

3.2 Case 2: Corridor 
 
The corridor sequence, shown in Fig. 7 and developed at 
INRIA [11], comprises nine images of the interior of a 
corridor, captured at three sets of various distances and 
focal lengths. 

 

    
  

    
  

    
 

Figure 7: Corridor sequence of images. 
 

In the corridor sequence, arbitrary pairs of images 
typically differ by a movement of the camera in the 
direction of the corridor, with possibly an additional slight 
rotation and zoom.  Figure 8 shows corridor images #2 and 
#9 with some epipolar lines, again computed from a 
fundamental matrix estimate that used manually supplied 
correspondence points.  In these images, it can easily be 
seen that the epipoles lie within the boundaries of each 
image. 

 

   
 

Figure 8: Corridor images #2 and #9 with epipolar lines. 
 

As in the previous subsection, for each of the 36 
combinations of pairs of corridor images, corresponding 
points were manually labeled.  The NFS is computed in 
order to compare each of the six pairs of estimation 
techniques for each pair of images, and the results are 
plotted in the following figures. 
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Figure 9: NFS (Hartley, DIST): Red X 

NFS (Hartley, GRAD): Blue O 
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Figure 9: NFS (Hartley, LMS): Red X 

NFS (DIST, LMS): Blue O 
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Figure 10: NFS (GRAD, LMS): Red X 

NFS (DIST, GRAD): Blue O 
 
4. Discussion 
 
As can be seen in Figs. 4-6 and 8-10, we can gain some 
insight into how each fundamental matrix estimation 
technique performs relative to the other techniques for each 
individual image, and in general.  For example, Figs. 4 and 
8 seem to indicate that the DIST and GRAD techniques 
provide better estimates than Hartley’s algorithm.  
However, a few select pairs of church and corridor images 
do yield a better estimate with Hartley’s method.  Perhaps 
this is due to the nonlinear techniques getting stuck in local 
minima. 

Figures 5 and 9 lead us to believe that the DIST and 
GRAD criteria are equally useful in generating a good 
fundamental matrix estimate.  These figures and Figs. 6 
and 10 would also indicate that the LMS technique is 
superior to all others in the vast majority of image pairs.  
This conclusion is the intuitive one: an estimate that 
minimizes the median squared error will tend to make half 
of the terms of Eq. (11) small.  However, a handful of pairs 
of church and corridor images do show that the LMS 
technique does NOT perform as well as the other 
techniques.   

These results indicate the usefulness of the NFS as a 
measure of the confidence that one fundamental matrix 
estimation technique performs better than another, both in 
general, and on specific pairs of images.   
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