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Abstract

In this paper we explore a new two-stage approach to un-
supervised image segmentation. First we cluster pixels in
the image colour histogram space with a Minimum Discrip-
tion Length parametric clustering method to approximate
hypothesized densities. Second, we utilize a variant of a
MRF model called EM-HMRF as well as loopy belief prop-
agation to update the region densities, and so, segmenta-
tion. The system is autonomous with the number of clusters
being estimated at run time. Results are promising with both
coloured and grey-scale images.

Keywords: Unsupervised Image Segmentation,
MArkov Random Fields, Bayesian inference, Expectation-
Maximization.

1 Introduction

Image Segmentation is difficult to solve partly due to it’s ill-
proposed nature and the variations that occur over many dif-
ferent types of images. Much research effort ([1], [2], [3],
[10]) have been devoted to this issue partly due to its prac-
tical uses in such tasks as image retrieval. Consequently,
in this paper we restrict interest to classes of images (grey-
level or coloured) that are (nearly) piecewise continuous as
considered by Geman and Geman [6].

Three key problems arise in unsupervised image seg-
mentation:

• how to extract features from image data to build the
appropriate feature space;

• how to estimate the clusters(modes) from the feature
space of image data;

• given the estimated clusters, how to perform spatial
grouping to decide which pixel belong to which clus-
ter.

∗This project was funded by a grant from the Natural Science and En-
gineering Research Council of Canada.

Our approach to these three problems is to use Bayesian pa-
rameter estimation methods of current interest in the com-
puter vision literature, in general. With textures, for ex-
ample, Comaniciu et. al. [3] have interleaved nonpara-
metric (Mean Shift) methods to model the feature space
using sliding windows and outlier detection iteratively till
convergence, clusters are then constructed in the ‘cleaned’
data; Carson et. al. [2]’s ‘blob world’ approach integrates
human’s prior knowledge as multiple cues and then com-
bines those cues to form the feature space. The EM (Ex-
pectation Maximization) algorithm is employed in the fea-
ture space to estimate MDL-based (Minimum Description
Length) clustering.

Our approach addresses image segmentation task in a
different way. Here, the feature space is formed by a non-
linear transformation of the image raw data. An EM-type
mixture of Gaussian (MoG) algorithm is then run in the fea-
ture space to extract sufficient statistics for the image data,
with the estimated number of clusters based on the MDL
criteria. Similar to Zhang et. al [10]’s method, the image
domain is modeled as a HMRF (Hidden Markov Random
Field) and the EM method is utilized to iteratively estimate
the parameters of clusters and infer the hidden cluster label
for each pixel.

The paper is organized as follows: First, the MDL clus-
tering algorithm is introduced in Sec. 2. Second, the im-
age model - the EM-HMRF (Expectation Maximization -
Hidden Markov Random Field) model is derived in detail
in Sec. 3. Third, the LBP (Loopy Belief Propagation) al-
gorithm is introduced as the inference engine for the MRF
layer in Sec. A. Finally, experimental results are shown in
Sec. 5 with conclusions in Sec. 6.

2 MDL-based clustering algorithm

Assuming that the image feature space can be effectively
approximated by a mixture of K Gaussians, the first prob-
lem is how to estimate the Gaussian parameters θ = {θk =
(πk, µk,Σk); k = 1, . . . ,K} with priors, πk, means, µk,
and variance-covariance matrices, Σk. To achieve this, the
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Figure 1: Flow chart illustration of the proposed two-stage (clustering
and inference) framework.

EM algorithm is typically used to determine the optimal pa-
rameters of a mixture of K Gaussian in the maximum likeli-
hood sense [4]. In this approach, however, what is missing
is the derivation of an optimal inference procedure for pixel
clustering, even given optimal feature space clustering.

For clustering, we can compute the complete data likeli-
hood as p(X,Y |θ) where X denotes the evidence for image
pixels, Y is the set of observed image data, where θ refers
to the set of Gaussian parameters that define an objective
function Q which corresponds to the expected complete log
likelihood (Fig. 2):

Q(q, θ) = Eq(X|Y,θ)[ln(p(X,Y |θ))].
The EM algorithm iterates through computing the E step:

q(X|Y, θ) = arg max
q∗ Q(q, θ)

and the M step:

θ = arg max
θ∗

Q(q, θ)

till converge to local optimal (see [4] for more details of the
EM algorithm).

The problem of determining K, the number of mixture
components, is a model selection problem [7]. Ideally K is
chosen to best fit the ‘natural’ number of clusters present in
the feature space by using the EM algorithm over different
numbers of clusters. However, Maximum Likelihood esti-
mators, to which the EM algorithm belongs to, tend to over-
fit the data converging on the most complex model. So, to
regularize the ML estimator, one can use model selection
criteria, such as AIC (Akaike Information Criteria), BIC
(Bayesian Information Criteria), etc [7]. The objective we
adopted here is to minimize the MDL criteria given by [1]:

MDL(K, θ) = −
N∑

n=1

log

(
K∑

k=1

pyn|xn
(yn|k, θ)πk

)
+

1

2
S log(NM)

(1)

K

N
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Figure 2: Graphical model for mixture of Gaussian clusters. Here the
circles denote variables and boxes for those which are iid’s (independent
identical distributions). The shaded circle corresponds to the observed
variables and unshaded for the hidden variables. K is the number of Gaus-
sians, N is the number of data points; x is the cluster label, y is the observed
data vector. θk represents the Gaussian parameters for a given cluster.

and where

S = K

(
1 + M +

(M + 1)M
2

)
− 1.

Notice that from a Bayesian viewpoint, Eq.(1) is com-
posed of two parts, a likelihood part and a prior part. For
computational simplicity we choose to maximize the aug-
mented Q function:

Q(K, θ) ∝ MDL(K, θ)

where:

Q(K, θ) =
K∑

k=1

T̄k(−1
2
trace[Σ̄kΣ−1

k ] − 1
2
(µ̄k − µk)tΣ−1

k (µ̄k − µk)

−M

2
log(2π) − 1

2
log(|Σk|) + log(πk)) − 1

2
L log(NM).

T̄k, µ̄k, and Σ̄k are iteratively updated using the following
EM algorithm:

1. E step:

T̄k =
N∑

n=1

pxn|yn
(k|yn,K, θ)
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2. M step:

π̄k =
T̄k

N
(2)

µ̄k =
1
T̄k

N∑
n=1

ynpxn|yn
(k|yn,K, θ) (3)

Σ̄k =
1
T̄k

N∑
n=1

(yn − µ̄k)(yn − µ̄k)tpxn|yn
(k|yn,K, θ).

(4)

As a result of using this MDL principle, when several
models using different values of K fit the data equally well,
the algorithm chooses the simplest method. In our exper-
iment, we have set the range of K to between 1 and 6, as
from experimentation, this resulted in the best performance.

3 EM-HMRF image modelling

During the first stage of the proposed framework, MDL-
based mixture of Gaussian clustering was performed in the
feature space. In the second inference stage, following
Zhang et. al.’s [10] approach, a Hidden Markov Random
Field model is utilized to incorporate pixel-wise Markovian
interactions on the two dimensional image lattice, as illus-
trated in Fig.3 (Note the close resemblance of the model in
this second stage to that of the first stage). In this context,
the clustering labels x and the Gaussian parameters are un-
known variables.

As a consequence, we, again, resort to the EM algorithm
for parameter estimation. The EM algorithm is very similar
to that discussed in the previous section, with the only dif-
ference being that, instead of computing the expected com-
plete log likelihood in the E step directly, we approximate it
via loopy belief propagation, in the HMRF model. In other
words, consider we have observed a random field, denote
as Y , with each node defined by yi. There is also a HMRF
X , where each node, xi, ‘causes’ one unique node yi, and
via LBP (Loopy belief propagation, see Appendix A for
details), we can approximate the MAP of the posterior dis-
tribution of p(X|Y, θ). Meanwhile the M step is exactly the
same as Eq.2, 3 and 4, and of course the number of clusters
K is now a fixed value.

Currently we model the pixel-wise interaction in the
MRF simply using Potts model [4], that is:

pβ(X|Y, θ) =
1

z(β)
exp


−

∑
i∼j

βδ(xi �= xj)




where i and j are two neighbouring sites in the Markov Ran-
dom Field X; δ(·) = 1 if (·) = 1 and 0 otherwise; β is a

positive value in the Potts model used to encode the strength
of the interaction between neighbouring sites in X; z(β) is
the normalizing constant. Note that the β value is obviously
adaptive to the input image. For proof of concept here we
handcrafted this value with different images, but plan in the
future to let the model autmatically adapt the β value to cur-
rent images by Markov Chain Monte Carlo method as, for
example, described in [8].

HMRF

image

kθ

X

Y

β
K

Figure 3: The EM-HMRF segmentation model. Here the circles de-
note variables and boxes for iid’s (independent identical distributions), the
grid-box is for the HMRF. The shaded circle is for observed variables and
unshaded for the hidden variables; K is the number of Gaussians, X con-
tains, for each site, one segmentation label, Y contains the corresponding
transformed pixel values; β denote the parameter for the Potts model; θk

represents the Gaussian parameters for given cluster, respectively.

4 The segmentation framework

Image raw data are typically stored in RGB space. To make
the Eclidean distance calculation less sensitive to the lo-
cal manifolds of colour space, the feature space is formed
by nonlinear transformation of the image raw data into the
LUV 1 space. The transformed image data is then processed
using the following two-stage approach.

AS already mentioned, the first part, the MDL-based
clustering algorithm is performed on the feature space to
characterize the densities as mixture of Gaussians, in the
maximum likelihood sense. The image data is initially clus-
tered in the feature space using this model accordingly to
form the initial segmented image X; In the second part,
the image pixel segmentation labels are updated iteratively,

1We chose to use the LUV colour space due to its property of perpetual
uniformity: two colours are equally distant in the colour space. See [5]
for more details about the CIE LUV colour space.
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based on the EM-HMRF model, via the LBP inference in
the MRF layer. The algorithms stops when the EM-HMRF
algorithm converges to an equilibrium state. The basic steps
are the follows:

1. Nonlinear transformation of the image data from the
RGB space into the LUV space.

2. let t = 0. In the feature space, the MDL clustering al-
gorithm is employed for density estimation (obtaining
the parameters of the Gaussians θ0) and initial image
segmentation, X0.

3. let t = t + 1. In the image domain

(a) based on current image segmentation Xt, run the
EM algorithm to update the parameters of the
Gaussians, θt+1.

(b) Based on the parameters θt+1 and the image seg-
mentation Xt, the LBP algorithm is employed for
approximate inference of the new image segmen-
tation Xt+1.

4. repeat step 3 till convergence.

5 Experimental results

We have tested our algorithm on a variety of images. In this
section we show results on four images: hand, table tennis,
pentagon and forest, as shown in Figs. 4(a), 6(a), 8(a) and
10(a), respectively. The hand results are shown in Fig. 4.
In Fig. 4(b), after the MDL clustering stage, the estimated
model captures the image data with significant noise due
to the textured background. The segmentation of the first
EM-HMRF iteration is quite similar to Fig. 4(b). However,
as the EM-HMRF algorithm iterates, more noise elements
are smoothed out as seen in Fig. 4(c) - finally reaching the
equilibrium state in Fig. 4(d). The final result was deter-
mined from 3 Gaussian clusters, with parameters shown in
Fig. 5. The first iteration results of the table tennis image,
Fig. 6(b) are quite similar to that of the hand, again, due to
the textured regions. Notice that in further EM-HMRF it-
erations the segmentation results are quite stable with only
minor changes (see Fig. 6(c),(d)). In this case four clusters
were derived with parameters shown in Fig. 7. Fig. 8 shows
results for the pentagon image. The first iteration resulted
in slightly incorrect color positions (see Fig. 8(a)). With it-
erations, the image statistics were adjusted gradually to the
optimal values (Fig. 8(c),(d)) based on 6 clusters with pa-
rameters shown in Fig. 9. Fig. 10 contains results for the
forest image. Here significant noise remained in the first
iteration ( Fig. 10(b)) largely due to the wide dispersion of
colours in the colour space. This noise is eliminated quickly
at the second stage of the EM-HMRF; and then the changes

among iterations reach equilibrium similar to the table ten-
nis image (Fig. 10(c)) with 5 estimated clusters and the pa-
rameters are shown in Fig. 11.

¿From those simulations we have made three observa-
tions. First, the second inference stage overcomes the
noise-sensitive nature of the first stage (the MDL cluster-
ing model) by the EM-HMRF spatial model. Second, this
framework can also be applied to images only with ‘weak’
textural features (see Fig. 4(a), Fig. 6(a)) - consistent with
the assumed piecewise constant image model. Third, the
chance of success for this framework heavily depends on
the expressiveness of the feature space and also, due to the
large hypothesis space for θ and the possible multi-modal
nature for the posterior distribution of θ, we need to be care-
ful that the estimated θ0 of the first stage has to be as close
to the optimal (true) θ as possible so as to avoid only local
optimal solutions. Currently we have used multiple initial
values to avoid this situation.

(a) (b)

(c) (d)

Figure 4: (a) The hand image, 303x243 pixels colour image. (b) the re-
sult after the first stage (classification via Mixture of Gaussians densities).
(c) the result of the second EM-HMRF iteration; (d) the result after the
10th EM-HMRF iteration. β = 5 is used in this image.

Cluster 1 Cluster 2 Cluster 3
Prior 0.3613 0.0620 0.5767
Means 70.1035

51.3934
22.9182

66.0011
0.0000
0.0711

48.4535
16.2684
5.3237

Variance 12.3045 -16.4833 2.3298
-16.4833 47.9287 -0.2006

2.3298 -0.2006 17.1457

78.1949 -0.0001 -0.0367
-0.0001 0.0001 -0.0000
-0.0367 -0.0000 0.2072

121.8399 56.9382 39.1876
56.9382 249.1410 -0.5515
39.1876 -0.5515 49.1891

Figure 5: The mixture of Gaussians parameters for hand image.
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(a) (b)

(c) (d)

Figure 6: (a) the tabletennis 352x240 pixels colour image. (b) the result
after the first stage (classification via Mixture of Gaussian densities). (c)
the result of the first EM-HMRF iteration; (d) the result after the 4th EM-
HMRF iteration. β is set to 3.5 here.

Cluster 1 Cluster 2 Cluster 3 Cluster 4
Prior 0.0858 0.7289 0.0939 0.0914
Means 72.6170

3.3274
13.5868

75.5340
20.9906
18.7001

54.7385
85.6684
11.8647

74.6857
17.4750
12.6804

Variance
(1e+3)

0.0014 -0.0007 -0.0013
-0.0007 0.0049 0.0020
-0.0013 0.0020 0.0072

0.0140 -0.0071 -0.0048
-0.0071 0.0103 0.0037
-0.0048 0.0037 0.0063

0.0516 0.1434 0.0014
0.1434 1.1676 0.1128
0.0014 0.1128 0.0391

0.2317 -0.0987 -0.0754
-0.0987 0.2699 0.0447
-0.0754 0.0447 0.0567

Figure 7: The mixture of Gaussians parameters for the pingpang image.

6 Conclusions and future work

A new two-stage framework is proposed for unsupervised
image segmentation which employs the MDL clustering al-
gorithm for initial density estimation and image segmenta-
tion, and then the EM-HMRF model for inferring, enforc-
ing spatial constraint, via the LBP algorithm which infers
the optimal segmentation results from the Markov Random
Field. Promising results are obtained on some well-known
images. To continue this line of work, instead of the simple
model which focuses on assumed piecewise constant im-
ages, kernel methods (such as Fourier/wavelet-based con-
vex kernels) could be used to model the more complicated
textural components; meanwhile, instead of handcraft a
value for specific image, the parameter β can be estimated
with the bayesian sampling techniques [8].

A Inference using Loopy Belief Prop-
agation (LBP)

In this section we describe how to apply Loopy Belief Prop-
agation (LBP) approximation in this setting. First we de-

(a) (b)

(c) (d)

Figure 8: (a)initial clustering and segmentation of the pentagon image;
(b) the result after first EM-HMRF iteration; (c) result after 9 EM-HMRF
iterations; (d) the final result converges after 18 EM-HMRF iterations:
β = 3.5.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6
Prior 0.2168 0.1139 0.0647 0.1886 0.2519 0.1641
Means 121.0634 176.9440 142.2758 150.2287 135.6298 101.2054
Variance 60.4923 299.9312 722.9201 106.5095 64.7907 122.6017

Figure 9: The mixture of Gaussians parameters for pentagon image.

rive the full conditional joint distribution over all MRF sites
xi ∈ X , and assume iid distributions amongst nodes yi:

p(X|Y, θ) ∝ p(Y |X) p(X|θ)
=

∏
i

p((yi|xi)
∏
∂i

p(xi|x∂i, θ)

where θ refers to the aforementioned Mixture of Gaussians
parameters.

The belief for MRF X at node i is:

b(xi) ∝ p(yi|xi)
∏
j∈∂i

mj
i (xi) (5)

where the message update rules are:

mj
i (xi) ∝

∑
xj

p(xi|xj)p(yj |xj)
∏

k∈∂j\i

mk
j (xj).
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(a) (b) (c)

Figure 10: (a) the forest 203x420 pixel colour image. (b) the result after
the first stage (classification via Mixture of Gaussians densities). (c) the
result after the 4th EM-HMRF iteration. β = 6 in this image.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
Prior 0.0495 0.1912 0.3401 0.1809 0.2382
Means 58.9406

12.6989
23.5591

84.2029
14.1137
35.8005

82.0475
2.1750
5.4147

46.8941
0.5604
0.6711

74.1190
0.1444

18.4276
Variance
(diagnal)

321.1871
131.1732
167.6395

119.6599
60.6052
205.3584

89.6460
4.8920
13.7159

131.7911
13.4334
7.2348

245.9378
3.6627
60.3040

Figure 11: The mixture of Gaussians parameters for forest image. Due
to the space limit, only the diagonal elements of the variance-covariance
matrix are shown.

After computing the belief at site i, we have:

b(xi) ∝
∑

1,..,i−1,i+1,..,n

∏
i

p(yi|xi)
∏
∂i

p(xi|x∂i)

∝ p(xi|yi, θ).

This implies that, in this MRF network, the single be-
lief b(xi) approximates the marginal probability p(xi|yi, θ);
and in networks without loops, the beliefs are equal to the
exact marginal probabilities [9].

It is simple to show that the joint probabilities over the
hidden MRF X is just the product of beliefs over X , defied
by:

p(X|Y, θ) ∝
∏

i

p(yi|xi)
∏
j∈∂i

mj
i (xi)

∝
∏

i

b(xi).
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