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Abstract biologically plausible but computationally elegant model.

In this work, we propose a link between the statistical Ne attempt here is to explore the possibility of using
properties of natural images and cortical-cell developfundamental engineering principles and theories to un-
ment and organization in low-level vision. A Kohonerflerstand the brain’s visual system. Eigenvectors are use-
self-organizing neural network is used to process naturdHl in many physical applications and in the behaviour of
image input. The neuron weights and organized map anarious natural phenomena, such as sound waves, struc-
analyzed in terms of localized principal components, retral vibrations, energy levels of atoms, demonstrating
ferred to as “eigenpaxels”. Cortical-cell receptive-field hature’s affinity towards optimal patterns (eigenproblems

formation, organization and function are presented irffan be viewed as an optimization process through the
terms of these eigenpaxels. Rayleigh quotient). Here we propose another venue for

eigenvectors to play a role in nature, that of the biological
Keywords: low-level vision, principal component analy- Vision system. We present a model that seeks to explain

sis, Kohonen SOM, cortical modeling, natural images. in terms of eigenpaxels the emergence of the cortical
cell receptive fields, demonstrate the properties of their
1 Introduction known organization and architecture, and remain consis-

tent with their function and role in the visual processing
Many efforts in the field of robotics seek to apply andpathway. Our work in this area further supports the link
emulate the biological processes that enable movemesstablished between artificial neural networks and biolog-
control, and recognition. For robotic systems of the fuical vision [15], [23].
ture to be truly autonomous they will require the faculty
of vision, which remains to date an inadequately devell.1 Related Work

oped process, in part, because of the lack of thorougfe challenge of modeling the visual cortex and the vi-
understanding of the biological system. sual processing stream has spurred a healthy number of
This work stems from previous efforts [17] to genermodels and theories approaching the task from various
ate a model that replicates the logical visual strategy gfngles. Many studies concentrate on reproducing many
the early visual cortices in mammalian species. That res the cortical cell properties that Hubel and Wiesel had
search addressed the similarities between principal corgpserved in their experiments on cats and monkeys [9],
ponents ofimage patches and cortical cell properties. Theg] [11]. Von der Malsburg put forth one of the first of
term “eigenpaxels” was employed to refer to these eigeRnese successful models which used Hebbian learning for
vectors of natural image patches. In this study, we expanfe neural network [23], a practice which was adopted by
this model to encompass the architecture and function ffany other researchers after him. Fukushima [6] chose
well as the development of cortical cells. to approach the task by building a neural network model
The aim of this work is to further explore a correla-yth the same pattern recognition capabilities of a human
tion between eigenpaxels and the cells in low-level Vi, the hopes of providing a better understanding to the
sion. Through this research we hope to provide i”SigmiologicaI neural mechanism.
into the principles underlying the biological vision pro-  \yjith the development of sophisticated imaging tech-
cess, and in doing so, improve the performance of visio||f,1iques [1], more detailed and complex patterns in the
applications in artificial systems. We therefore desire Brganization and mappings of cortical cell characteris-

*Present Address: Institute for Aerospace Research, National RHCS were disgovered. Ma_ny studies focus on rep_roduc-
search Council, Ottawa, ON K1A OR6 ing these cortical maps, with respect to ocular dominance
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is characterized by trends in ocular dominance and orien-
tation selectivity. These trends are generally described by
Hubel and Wiesel’s [8] ice-cube model and Braitenberg
and Braitenberg’s [2] pinwheel model. More specific fea-
Figure 1:Simple-cell receptive-field arrangements. There aréures of the cortical organization are obtained from orien-
3 arrangements of the inhibitory and excitatory regions in th&ation selectivity and ocular dominance maps [5].

RF: a) OFF-ON-OFF: oriented illuminated bar, b) ON-OFF-

ON: oriented dark bar, c) OFF-ON: oriented edge. Adapte® L Ow-Level Vision Model

from [8]. . . o
Previous work [17] looked into the organization of Heb-

bian cells in a modified #ldiak network when presented
with natural image patches. The result was that the net-

and/or orientation selectivity trends, as in [20]. Otheiwork’s weight vectors converged to the lowest eigenvec-
work seeks to address the origins of cell orientation sqors of the correlation matrix of pixel values formed from
lectivity, for example [22]. the image data, referred to as “eigenpaxels”. The term

Analyzing natural images to explore their relationshippaxel” was used to refer to a “pack of pixels” or image
with cortical-cell receptive-field structure is an approachpatch. With raw image input, the network weights con-
that has been taken by several researchers. Hancocksetged to the first eigenpaxel. This eigenpaxel was then
al. [7] used a Sanger network based on Hebbian learfemoved from the input by normalizing the image, and
ing to extract the principal components of natural imag@s a result the weight vectors converged to the next two
patches in sequence through the network’s multiple ougigenpaxels.
put units, and observed a similarity with the arrangements  Building on these findings, this study continues to ex-
of cortical-cell receptive fields (RF). amine the convergence of cell weight vectors with nat-

The work of Olshausen and Field [19] employed airal image input. In our model we implement a Koho-
coding strategy to maximize sparseness in a set of naten self-organizing neural network to process the image
ural images in order to obtain basis functions possesgdata. The SOM is a 2-dimensional feature map which
ing the localized, oriented, and bandpass characteristigffeady has inherent properties that are similar to the
of simple-cell receptive fields. The images were preproeortex. The 2-dimensional array implies lateral connec-
cessed by filtering with a zero-phase whitening/lowpasgons without having to explicitly define them, and the
filter. An explicit cost function was optimized during approach of updating the winning neuron and its neigh-
learning in the simulations. bours enables a localizing effect. The transient encoun-

Hyvarinen and Hoyer [12], [13] continued the sparseered in the modified &ldiak network is avoided, and the
coding approach developed by Olshausen and Field teeight update equations are in general much simpler and
explain the emergence of simple-cell and complex-ceitraight-forward.
receptive-field properties as well as their columnar orga-

nization. 2.1 Eigenpaxels
) ) The principal components of natural images have an im-
1.2 Early Visual Processing portant role in this model. The eigenpaxel method was

Low-level vision is a subset of the form pathway, the pro€XPloited in earlier work [16] on image processing. Prin-
cessing stream responsible for object vision, segmerftiP@ component analysis is performed locally on image
ing and identifying contours, texture and colour of im-Paxels. Image paxels ok x n pixels are randomly se-
age data [21]. Low-level vision encompasses the retinigcted from the image set and converted to a vextof
lateral geniculate nucleus (LGN), and the primary visudEngthmn. A correlation matrix is formed from the im-
cortex. Each component of the pathway plays a role if{9€ Vectors

this task. Naturally, the cells are designed and organized T

to accomplish theﬁe duties. Retinal cells have a centre- ® = El(x - E(x))(x - E(x))"], 1)
surround receptivg field that reducgs the lateral redugm1ere E(x)
dancy of contrast information to facilitate edge and con
tour detection. The cortical cells in the primary visual

S = %cases) and may be diagonalized as
cortex have a receptive field assembled to perceive lines,

is the expected value of. The correlation
matrix is symmetric positive-definite (except in special

angles, edges, and motion (Figure 1). Itis these last cells, & = UIPU’, 2)
the simple and complex cells in the primary visual cortex,
on which we focus our attention. wherel = diag{/,} andU = row{e, } so that/2 ande,,

The architecture of cells in the primary visual cortexare the eigenvalues and eigenvectorabofespectively.



eigenpaxel 1
eigenval = 551736

elgenpaxel 2
eigenval = 0897003

eigenpaxel &
eigenval = 0.15095

eigenpaxel 3
eigenval = 085883

eigenpaxel 4
eigenval = (.Z244

and the winnerg = r; —r;«, the neighbourhood function,

A, is greatest when the node is the winres 0, and de-
creases as the distance between the nodes increases. The
learning rate and neighbourhood size are gradually de-
creased so that the weights are adjusted significantly at
the beginning of training and fine-tuned as training pro-
gresses.

[
=

eigenpaxel 5
aigenval = 019959

eigenpaxel 7 eigenpaxel 8
eigenval = 009087 aigenval = 0.0B0E

eigenpaxel 10 egenpaxel 11 eigenpaxel 12
eigenval - 006374 eigenval = 005363 eigenval = 0.0367

éugenpaxel 14
eigenval = 003393

Figure 2:The first 16 eigenpaxels and their eigenvalues. The
paxels are of sizé6 x 16 pixels.

eigenpaxel 9
eigenval = 0.07361

221

We formalize the previous approach [17] approach of
removing eigenpaxel components by subsequently sub-
tracting the particular eigenpaxel projections from the in-
put paxelsx to obtain a filtered input pax&:

Input

E

aigenpaxeal 13
sigenval = 0.03585

eigenpaxel 15
eiganval = 003137

eigenpaxal 16
aigenval = 00274

AN

1|

X=X—

(6)

wheree; are them x n pixel eigenpaxels, is the number

of eigenpaxel components to be subtracted, [ang? is
the L, norm ofe;.

The resulting eigenvectors can be converted back into 2- The eigenpaxels are subtracted in groups of 1, 3, 6
dimensional paxels, agigenpaxels Figure 2 shows the a4 10 so that eigenpaxel #1 is distinguished from eigen-
first 16 eigenpaxels and their eigenvalues obtained froghyels #2 and 3, eigenpaxels #4, 5, and 6 are consid-
an image _set of 1000 ran_domly selected pa_xels of sizged a group, and eigenpaxels #7, 8, 9, and 10 are a set.
16 x 16 pixels. The full images were obtained fromThe groupings of eigenpaxels were obtained by analyz-
the AT&T Laboratories Cambridge Database of Facegg their eigenvalues and structure. The second and third
(http://www.uk.research.att.com/facedatabase.html).  gjgenpaxels, for example, have a similar structure (Figure

2) but in orthogonal directions and therefore are treated
2.2 Network Structure as a pair. Eigenpaxels grouped together also have similar
The structure of the Kohonen self-organizing map (SOMirequency magnitude as was shown in spectral analysis
[14] that we use is a simple one-lay&f x N 2-D ar- [17].
ray of cells, with nodes;;, wherei = 1,2,..,M and
j = 1,2,..,N. Each cell or neuron has an associ2.2.2 Implementation

ated weight vectow;;. Learning in this network oc- The jmplementation details of the SOM neural network

curs through competitive learning. For each inpytev-  are summarized in the following steps. The series of steps
ery cell's weights are compared to determine the closegtied occur for each iteration.

match to the input. This comparison is carried out by

minimum Euclidean distance:

®3)

wherei*, j* denotes the location of the winning cell. The
weight vector of the winning cell is adjusted as well as

[Wixje — x| < |lwij — x|,

that of the cells in the designated neighbourhood of the

winner, according to the neighbourhood activity function
A.

Awi BA(le)(x = wi)

62
exXp | — ﬁ s

where 5 is the learning rateg is the distance between
the node and the winner, andis the neighbourhood
size [14]. As a function of the scalar learning rate fac-
tor, 0 < 3(¢) < 1, and the distance between the neuron

(4)

A(e) (5)

1. Network Input (Figure 3).

Randomly choose an image file. The images
are from a face database of 40 subjects, 10 poses
each.

From the selected image, randomly choose
n pixel image paxelx.

Calculate the eigenpaxel component(s) and
subtract them from image paxel according to Equa-
tion (6).

2. Competitive Learning.

Determine the winning node by comparing the
Euclidean distance between the weights of each
node, w;;, and the input paxelk, according to
Equation (3).
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Figure 4:This figure shows the weight vectors of x 6 - cell
SOM array with raw image input after 5000 iterations. We see
a spectrum of pixel intensities in the monocontrast paxels.
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Figure 3:This figure illustrates how the filtered inputs are gen-
erated. All paxels are of sizié x 16 pixels, but are not shown to
scale. (1) A random image is selected from the database. (2) A
random image paxel is selected from the image. (3) The eigen-
paxels projections are determined and removed from the image
paxel. (4) The filtered image paxel is input to the network.
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Update the weights of the cells in the neigh- ‘ - . il '
bourhood of the winning cell according to the neigh-

bourhood activity functionj, using Equations (4) Figure 5: This figure shows the weight vectors ofax 6 -

and (5). cell SOM array with the first eigenpaxel filtered from the input
Update the learning ratg, and neighborhood after 5000 iterations. The weight paxels resemble the structure

size,o, of the second and third eigenpaxels, but in all intermediate ori-
entations.
/6 = /60 exp(f?’ﬂ/’imam)
o = o0o(l —K/Kmaz), ' ' -
—
wherex is the iteration index. ’ ﬂ " H h :
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Plot the network weights as paxels in the net- -
work array. Figure 6: This figure shows the weight vectors ofax 6 -
cell SOM array with the first three eigenpaxels filtered from the
3 RESU'tS input after 5000 iterations. The weight paxels are similar to

. . . . eigenpaxels #4, 5, and 6 in all orientations and phases.
Simulations were run using Matlab Release 12. Either

5000 or 10000 iterations were run, each iteration using

a different random paxel from a random face image as

input. The images were stationary greyscale images ob- When the raw image paxels were input to the network,
tained from the AT&T Laboratories Cambridge Databaseonvergence was reached within 5000 iterations. Figure
of Faces. We used6 x 16 pixel-sized paxels. SOMs 4 shows the plot of the weights foi6ax 6 - cell map. The
with fixed array sizes of x 6,8 x 8,10 x 10, 12 x 12, first eigenpaxel is thought to represent the average pixel
and16 x 16 nodes were simulated [3]. Here, howeverjntensity and thus is known as the monocontrast eigen-
we present only weight plots from tifex 6 and16 x 16  paxel [17]. In the resulting plot, we see a palette of inten-
- cell maps. All the weights were initialized to randomsities of the monocontrast paxel, so that the distribution
values between 0 and 1. of the weights is along the first eigenpaxel. This result re-
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produces the previous findings for raw image input [17].
In the next case, the first eigenpaxel projection is "
subtracted from the input image paxel. Convergence is r
achieved after 5000 iterations as shown in Figure 5. The ;
r
»
|
[ ]

weight plots resemble the structure of the second and rErr
third eigenpaxels, but in all intermediate orientations in -4 ﬁ
addition to the vertical and horizontal. These weight plots -3 5.8
show resemblance to the oriented-edge arrangement of .-
simple cell RFs. The distribution of the oriented weights EERR

is in a pinwheel pattern around the centre. ..
Now when the first 3 eigenpaxel projections are re- @- -

moved from the image, depicted in Figure 6, the struc-

ture of the weight paxels show likeness to the next set of

eigenpaxels, eigenpaxels #4, 5, and 6, but again in all Ofiigre 7: Orientation Selectivity Map Features on the weight

entations_ and phases. If we continue to subtract the neﬁ%t of al6 x 16 - cell SOM array with 1 eigenpaxel projection
level of elgen-paxel comppnents (#1-6), the cell maps A€moved from the input: (1) linear zone, (2) singularities, (3)
found to continue to distribute themselves along the next, jqie point, (4) fractures.

level of eigenpaxels (#7-10) [3].

4 Discussion

. . . . these two eigenpaxels. The fourth, fifth, and sixth eigen-
Through these simulations we verify that by using a Ko axels are reminiscent of a more distinct line structure, as

honen SOM network we are able to extract hlgher-ordé§ posed to an edge, although the fifth eigenpaxel is more

eigenpaxels from the image data when the COMPONENLs checkerboard pattern with four quadrants. This set of
of lower-order eigenpaxels are removed from the mpu%igenpaxels shows strong similarity to the ON-OFF-ON
This is not a surprising result. The ability of a neural neténd OFF-ON-OFF RF arrangement. With the first five
work to perform principal component analysis has bee&genpaxels of natural images, we a.re yih e rstive
noteq and addressed by se\{eral researchers [18], .[4]' arkable likeness to the three major RF arrangements in
the eigenpaxels are sequentially removed from the image, o1 cells

the lateral competition and learning within the network '

allows the weights of the connections to converge to the

next eigenpaxel group, distributing themselves along th#&1.2  Organizational Properties

eigenpaxel dimension. This allows for the developmenty o rogyits of the simulations also demonstrate proper-
of a full spectrum of orientations which is seen in cortlca{ieS of neural organization, the lateral spatial organiza-

cells. tion of the cells. Through lateral competition within the
network, neighbouring cells show preferences for similar
line orientations. This preference changes gradually from
4.1.1 Receptive-Field Development cell to cell along the map to form a configuration resem-
First, we draw attention to the similarities between eigeriling Braitenberg and Braitenberg’s pinwheel pattern [2].
paxels (Figure 2) and cortical cell receptive fields (Figure In terms of the common features of orientation selec-
1). There is a striking resemblance between the first fetivity maps [5], there is evidence of linear zones, singu-
principal eigenpaxels and the RF arrangements, as hasities, fractures and saddle points, as indicated in Figure
been noted by other researchers [7], [19]. 7.

The first eigenpaxel represents the DC component of As the pinwheel pattern is found in all of the sim-
images, the average greyscale, also known as the mongated maps, a singularity is present at the centre.
contrast eigenpaxel. There is some similarity to th@ractures exist because orientation preferences change
centre-surround arrangement, however this resemblang@oothly around the singularity and hence along a
is attributed to the display of these eigenpaxels wittraight path there is a rapid change of orientation. Linear
heightened contrast. The second and third eigenpaxelgnes are also commonly found in these maps in regions
show likeness to horizontal and vertical edges, and hetghere the orientation preference from one cell to the next
we draw parallels to the oriented-line or oriented-edgéloes not vary greatly for linear stretches. Saddle points
structure in the cortical cell RFs. Since eigenpaxels argre not as easy to identify, but appear to develop in the
all mutually orthogonal and independent, the intermefarger networks near the centre of the maps at the inter-
diate orientations are included in the space spanned B¥gction of opposing pinwheel structures.

4.1 Similarities to Cortical Cell Properties



4.1.3 Processing Features tunes itself, organizing in a topographic manner and de-

Through the early stages of the visual pathway, the retin€/0Ping its individual properties through the course of
LGN, and primary visual cortex, there is a sequential prghformation sharing between neighbouring cells. What
cessing being conducted. The processing function of tH¥€ have shownis that a SOM will converge to the princi-
retina is to adapt to local illumination levels and thereby@ components of natural images, and the weights of the
highlight the edges in the image data [17]. This task i&""aY will d|str|byte .themselves along these dlmensmns.
accomplished by passing the image through the centrEfm the organization and structure of the weight plots,
surround RFs of the ganglion cells that reduce the lal¥e draw S|m|lar|t|es_to e_X|st|ng properties of cortical cell
eral redundancy of contrast information leaving predomStructure and organization. _ ,
inantly edge information. We simulate this process by /S & comprehensive and functional model of the pri-
inputting raw image paxels to a Kohonen SOM networkMary visual cortex, there are obviously several facets in

representing the retinal cells. The processing of the nelthich this model is incomplete. Architectural character-

work results in the weights converging to the first eigenI_StICS such as ocular dominance have not been accounted

paxel dimension of the image, demonstrating how thg)r. Cortical cell characteristics such as direction selec-
cells have become sensitive to :[his dimension. tivity or orientation tuning bandwidths have not been ad-
The processing stream continues from the retina to ﬂ{Eessed either. The goal of this research was to examine

primary visual cortex via the LGN. No visual processingI he ext(tant. tq Wh'(f:rll e|g|enplax'el's Co\lj\lld be ufse?htohl'ntgdrpret
occurs in the LGN. In the primary visual cortex, the in-characteristics of low-level vision. We put forth this idea

formation is passed to the cortical cells. The role of thd! an attempt to provide insight into the neural mecha-

primary visual cortex in the visual processing stream jgismin the brain.

to refine the visual information further, highlighting theAcknowledgements:This research was supported by the
line orientation characteristics of the data. Thus the celfatural Sciences and Engineering Research Council of
are specific for oriented lines, and their RFs are designéeanada (NSERC).

to respond to these stimuli. This process is simulated by

subtracting the component of the first eigenpaxel from

the image and inputting this filtered image to the netReferences
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