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Abstract
In this work, we propose a link between the statistical
properties of natural images and cortical-cell develop-
ment and organization in low-level vision. A Kohonen
self-organizing neural network is used to process natural
image input. The neuron weights and organized map are
analyzed in terms of localized principal components, re-
ferred to as “eigenpaxels”. Cortical-cell receptive-field
formation, organization and function are presented in
terms of these eigenpaxels.
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1 Introduction
Many efforts in the field of robotics seek to apply and
emulate the biological processes that enable movement,
control, and recognition. For robotic systems of the fu-
ture to be truly autonomous they will require the faculty
of vision, which remains to date an inadequately devel-
oped process, in part, because of the lack of thorough
understanding of the biological system.

This work stems from previous efforts [17] to gener-
ate a model that replicates the logical visual strategy of
the early visual cortices in mammalian species. That re-
search addressed the similarities between principal com-
ponents of image patches and cortical cell properties. The
term “eigenpaxels” was employed to refer to these eigen-
vectors of natural image patches. In this study, we expand
this model to encompass the architecture and function as
well as the development of cortical cells.

The aim of this work is to further explore a correla-
tion between eigenpaxels and the cells in low-level vi-
sion. Through this research we hope to provide insight
into the principles underlying the biological vision pro-
cess, and in doing so, improve the performance of vision
applications in artificial systems. We therefore desire a
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biologically plausible but computationally elegant model.
The attempt here is to explore the possibility of using
fundamental engineering principles and theories to un-
derstand the brain’s visual system. Eigenvectors are use-
ful in many physical applications and in the behaviour of
various natural phenomena, such as sound waves, struc-
tural vibrations, energy levels of atoms, demonstrating
nature’s affinity towards optimal patterns (eigenproblems
can be viewed as an optimization process through the
Rayleigh quotient). Here we propose another venue for
eigenvectors to play a role in nature, that of the biological
vision system. We present a model that seeks to explain
in terms of eigenpaxels the emergence of the cortical
cell receptive fields, demonstrate the properties of their
known organization and architecture, and remain consis-
tent with their function and role in the visual processing
pathway. Our work in this area further supports the link
established between artificial neural networks and biolog-
ical vision [15], [23].

1.1 Related Work
The challenge of modeling the visual cortex and the vi-
sual processing stream has spurred a healthy number of
models and theories approaching the task from various
angles. Many studies concentrate on reproducing many
of the cortical cell properties that Hubel and Wiesel had
observed in their experiments on cats and monkeys [9],
[10], [11]. Von der Malsburg put forth one of the first of
these successful models which used Hebbian learning for
the neural network [23], a practice which was adopted by
many other researchers after him. Fukushima [6] chose
to approach the task by building a neural network model
with the same pattern recognition capabilities of a human
in the hopes of providing a better understanding to the
biological neural mechanism.

With the development of sophisticated imaging tech-
niques [1], more detailed and complex patterns in the
organization and mappings of cortical cell characteris-
tics were discovered. Many studies focus on reproduc-
ing these cortical maps, with respect to ocular dominance



Figure 1:Simple-cell receptive-field arrangements. There are
3 arrangements of the inhibitory and excitatory regions in the
RF: a) OFF-ON-OFF: oriented illuminated bar, b) ON-OFF-
ON: oriented dark bar, c) OFF-ON: oriented edge. Adapted
from [8].

and/or orientation selectivity trends, as in [20]. Other
work seeks to address the origins of cell orientation se-
lectivity, for example [22].

Analyzing natural images to explore their relationship
with cortical-cell receptive-field structure is an approach
that has been taken by several researchers. Hancock et
al. [7] used a Sanger network based on Hebbian learn-
ing to extract the principal components of natural image
patches in sequence through the network’s multiple out-
put units, and observed a similarity with the arrangements
of cortical-cell receptive fields (RF).

The work of Olshausen and Field [19] employed a
coding strategy to maximize sparseness in a set of nat-
ural images in order to obtain basis functions possess-
ing the localized, oriented, and bandpass characteristics
of simple-cell receptive fields. The images were prepro-
cessed by filtering with a zero-phase whitening/lowpass
filter. An explicit cost function was optimized during
learning in the simulations.

Hyvärinen and Hoyer [12], [13] continued the sparse
coding approach developed by Olshausen and Field to
explain the emergence of simple-cell and complex-cell
receptive-field properties as well as their columnar orga-
nization.

1.2 Early Visual Processing
Low-level vision is a subset of the form pathway, the pro-
cessing stream responsible for object vision, segment-
ing and identifying contours, texture and colour of im-
age data [21]. Low-level vision encompasses the retina,
lateral geniculate nucleus (LGN), and the primary visual
cortex. Each component of the pathway plays a role in
this task. Naturally, the cells are designed and organized
to accomplish these duties. Retinal cells have a centre-
surround receptive field that reduces the lateral redun-
dancy of contrast information to facilitate edge and con-
tour detection. The cortical cells in the primary visual
cortex have a receptive field assembled to perceive lines,
angles, edges, and motion (Figure 1). It is these last cells,
the simple and complex cells in the primary visual cortex,
on which we focus our attention.

The architecture of cells in the primary visual cortex

is characterized by trends in ocular dominance and orien-
tation selectivity. These trends are generally described by
Hubel and Wiesel’s [8] ice-cube model and Braitenberg
and Braitenberg’s [2] pinwheel model. More specific fea-
tures of the cortical organization are obtained from orien-
tation selectivity and ocular dominance maps [5].

2 Low-Level Vision Model
Previous work [17] looked into the organization of Heb-
bian cells in a modified F̈oldiák network when presented
with natural image patches. The result was that the net-
work’s weight vectors converged to the lowest eigenvec-
tors of the correlation matrix of pixel values formed from
the image data, referred to as “eigenpaxels”. The term
“paxel” was used to refer to a “pack of pixels” or image
patch. With raw image input, the network weights con-
verged to the first eigenpaxel. This eigenpaxel was then
removed from the input by normalizing the image, and
as a result the weight vectors converged to the next two
eigenpaxels.

Building on these findings, this study continues to ex-
amine the convergence of cell weight vectors with nat-
ural image input. In our model we implement a Koho-
nen self-organizing neural network to process the image
data. The SOM is a 2-dimensional feature map which
already has inherent properties that are similar to the
cortex. The 2-dimensional array implies lateral connec-
tions without having to explicitly define them, and the
approach of updating the winning neuron and its neigh-
bours enables a localizing effect. The transient encoun-
tered in the modified F̈oldiák network is avoided, and the
weight update equations are in general much simpler and
straight-forward.

2.1 Eigenpaxels
The principal components of natural images have an im-
portant role in this model. The eigenpaxel method was
exploited in earlier work [16] on image processing. Prin-
cipal component analysis is performed locally on image
paxels. Image paxels ofm × n pixels are randomly se-
lected from the image set and converted to a vectorx of
lengthmn. A correlation matrix is formed from the im-
age vectors

Φ = E[(x− E(x))(x− E(x))T ], (1)

whereE(x) is the expected value ofx. The correlation
matrix is symmetric positive-definite (except in special
cases) and may be diagonalized as

Φ = UI2UT , (2)

whereI = diag{Iα} andU = row{eα} so thatI2
α andeα

are the eigenvalues and eigenvectors ofΦ respectively.



Figure 2:The first 16 eigenpaxels and their eigenvalues. The
paxels are of size16× 16 pixels.

The resulting eigenvectors can be converted back into 2-
dimensional paxels, oreigenpaxels. Figure 2 shows the
first 16 eigenpaxels and their eigenvalues obtained from
an image set of 1000 randomly selected paxels of size
16 × 16 pixels. The full images were obtained from
the AT&T Laboratories Cambridge Database of Faces
(http://www.uk.research.att.com/facedatabase.html).

2.2 Network Structure
The structure of the Kohonen self-organizing map (SOM)
[14] that we use is a simple one-layerM × N 2-D ar-
ray of cells, with nodesrij , wherei = 1, 2, ..,M and
j = 1, 2, .., N . Each cell or neuron has an associ-
ated weight vectorwij . Learning in this network oc-
curs through competitive learning. For each input,x, ev-
ery cell’s weights are compared to determine the closest
match to the input. This comparison is carried out by
minimum Euclidean distance:

‖wi∗j∗ − x‖ ≤ ‖wij − x‖, (3)

wherei∗, j∗ denotes the location of the winning cell. The
weight vector of the winning cell is adjusted as well as
that of the cells in the designated neighbourhood of the
winner, according to the neighbourhood activity function
Λ.

∆wij = βΛ(|ε|)(x−wij) (4)

Λ(ε) = exp
(
− ε2

2σ2

)
, (5)

whereβ is the learning rate,ε is the distance between
the node and the winner, andσ is the neighbourhood
size [14]. As a function of the scalar learning rate fac-
tor, 0 ≤ β(t) ≤ 1, and the distance between the neuron

and the winner,ε = ri−ri∗ , the neighbourhood function,
Λ, is greatest when the node is the winner,ε = 0, and de-
creases as the distance between the nodes increases. The
learning rate and neighbourhood size are gradually de-
creased so that the weights are adjusted significantly at
the beginning of training and fine-tuned as training pro-
gresses.

2.2.1 Input

We formalize the previous approach [17] approach of
removing eigenpaxel components by subsequently sub-
tracting the particular eigenpaxel projections from the in-
put paxelsx to obtain a filtered input paxelx:

x = x−
∑

i

xT ei

‖ei‖2
ei, (6)

whereei are them×n pixel eigenpaxels,i is the number
of eigenpaxel components to be subtracted, and‖ei‖2 is
theL2 norm ofei.

The eigenpaxels are subtracted in groups of 1, 3, 6
and 10 so that eigenpaxel #1 is distinguished from eigen-
paxels #2 and 3, eigenpaxels #4, 5, and 6 are consid-
ered a group, and eigenpaxels #7, 8, 9, and 10 are a set.
The groupings of eigenpaxels were obtained by analyz-
ing their eigenvalues and structure. The second and third
eigenpaxels, for example, have a similar structure (Figure
2) but in orthogonal directions and therefore are treated
as a pair. Eigenpaxels grouped together also have similar
frequency magnitude as was shown in spectral analysis
[17].

2.2.2 Implementation

The implementation details of the SOM neural network
are summarized in the following steps. The series of steps
listed occur for each iteration.

1. Network Input (Figure 3).

Randomly choose an image file. The images
are from a face database of 40 subjects, 10 poses
each.

From the selected image, randomly choosem×
n pixel image paxel,x.

Calculate the eigenpaxel component(s) and
subtract them from image paxel according to Equa-
tion (6).

2. Competitive Learning.

Determine the winning node by comparing the
Euclidean distance between the weights of each
node, wij , and the input paxel,x, according to
Equation (3).



Figure 3:This figure illustrates how the filtered inputs are gen-
erated. All paxels are of size16×16 pixels, but are not shown to
scale. (1) A random image is selected from the database. (2) A
random image paxel is selected from the image. (3) The eigen-
paxels projections are determined and removed from the image
paxel. (4) The filtered image paxel is input to the network.

Update the weights of the cells in the neigh-
bourhood of the winning cell according to the neigh-
bourhood activity function,Λ, using Equations (4)
and (5).

Update the learning rate,β, and neighborhood
size,σ,

β = β0 exp(−3κ/κmax)
σ = σ0(1− κ/κmax),

whereκ is the iteration index.

3. Weight Plots.

Normalize the weights.

wij =
wij

‖wij‖

Plot the network weights as paxels in the net-
work array.

3 Results
Simulations were run using Matlab Release 12. Either
5000 or 10 000 iterations were run, each iteration using
a different random paxel from a random face image as
input. The images were stationary greyscale images ob-
tained from the AT&T Laboratories Cambridge Database
of Faces. We used16 × 16 pixel-sized paxels. SOMs
with fixed array sizes of6 × 6, 8 × 8, 10 × 10, 12 × 12,
and16 × 16 nodes were simulated [3]. Here, however,
we present only weight plots from the6× 6 and16× 16
- cell maps. All the weights were initialized to random
values between 0 and 1.

Figure 4:This figure shows the weight vectors of a6× 6 - cell
SOM array with raw image input after 5000 iterations. We see
a spectrum of pixel intensities in the monocontrast paxels.

Figure 5: This figure shows the weight vectors of a6 × 6 -
cell SOM array with the first eigenpaxel filtered from the input
after 5000 iterations. The weight paxels resemble the structure
of the second and third eigenpaxels, but in all intermediate ori-
entations.

Figure 6: This figure shows the weight vectors of a6 × 6 -
cell SOM array with the first three eigenpaxels filtered from the
input after 5000 iterations. The weight paxels are similar to
eigenpaxels #4, 5, and 6 in all orientations and phases.

When the raw image paxels were input to the network,
convergence was reached within 5000 iterations. Figure
4 shows the plot of the weights for a6×6 - cell map. The
first eigenpaxel is thought to represent the average pixel
intensity and thus is known as the monocontrast eigen-
paxel [17]. In the resulting plot, we see a palette of inten-
sities of the monocontrast paxel, so that the distribution
of the weights is along the first eigenpaxel. This result re-



produces the previous findings for raw image input [17].
In the next case, the first eigenpaxel projection is

subtracted from the input image paxel. Convergence is
achieved after 5000 iterations as shown in Figure 5. The
weight plots resemble the structure of the second and
third eigenpaxels, but in all intermediate orientations in
addition to the vertical and horizontal. These weight plots
show resemblance to the oriented-edge arrangement of
simple cell RFs. The distribution of the oriented weights
is in a pinwheel pattern around the centre.

Now when the first 3 eigenpaxel projections are re-
moved from the image, depicted in Figure 6, the struc-
ture of the weight paxels show likeness to the next set of
eigenpaxels, eigenpaxels #4, 5, and 6, but again in all ori-
entations and phases. If we continue to subtract the next
level of eigenpaxel components (#1-6), the cell maps are
found to continue to distribute themselves along the next
level of eigenpaxels (#7-10) [3].

4 Discussion
Through these simulations we verify that by using a Ko-
honen SOM network we are able to extract higher-order
eigenpaxels from the image data when the components
of lower-order eigenpaxels are removed from the input.
This is not a surprising result. The ability of a neural net-
work to perform principal component analysis has been
noted and addressed by several researchers [18], [4]. As
the eigenpaxels are sequentially removed from the image,
the lateral competition and learning within the network
allows the weights of the connections to converge to the
next eigenpaxel group, distributing themselves along this
eigenpaxel dimension. This allows for the development
of a full spectrum of orientations which is seen in cortical
cells.

4.1 Similarities to Cortical Cell Properties
4.1.1 Receptive-Field Development

First, we draw attention to the similarities between eigen-
paxels (Figure 2) and cortical cell receptive fields (Figure
1). There is a striking resemblance between the first few
principal eigenpaxels and the RF arrangements, as has
been noted by other researchers [7], [19].

The first eigenpaxel represents the DC component of
images, the average greyscale, also known as the mono-
contrast eigenpaxel. There is some similarity to the
centre-surround arrangement, however this resemblance
is attributed to the display of these eigenpaxels with
heightened contrast. The second and third eigenpaxels
show likeness to horizontal and vertical edges, and here
we draw parallels to the oriented-line or oriented-edge
structure in the cortical cell RFs. Since eigenpaxels are
all mutually orthogonal and independent, the interme-
diate orientations are included in the space spanned by

Figure 7:Orientation Selectivity Map Features on the weight
plot of a16× 16 - cell SOM array with 1 eigenpaxel projection
removed from the input: (1) linear zone, (2) singularities, (3)
saddle point, (4) fractures.

these two eigenpaxels. The fourth, fifth, and sixth eigen-
paxels are reminiscent of a more distinct line structure, as
opposed to an edge, although the fifth eigenpaxel is more
of a checkerboard pattern with four quadrants. This set of
eigenpaxels shows strong similarity to the ON-OFF-ON
and OFF-ON-OFF RF arrangement. With the first five
eigenpaxels of natural images, we are able to draw a re-
markable likeness to the three major RF arrangements in
cortical cells.

4.1.2 Organizational Properties

The results of the simulations also demonstrate proper-
ties of neural organization, the lateral spatial organiza-
tion of the cells. Through lateral competition within the
network, neighbouring cells show preferences for similar
line orientations. This preference changes gradually from
cell to cell along the map to form a configuration resem-
bling Braitenberg and Braitenberg’s pinwheel pattern [2].

In terms of the common features of orientation selec-
tivity maps [5], there is evidence of linear zones, singu-
larities, fractures and saddle points, as indicated in Figure
7.

As the pinwheel pattern is found in all of the sim-
ulated maps, a singularity is present at the centre.
Fractures exist because orientation preferences change
smoothly around the singularity and hence along a
straight path there is a rapid change of orientation. Linear
zones are also commonly found in these maps in regions
where the orientation preference from one cell to the next
does not vary greatly for linear stretches. Saddle points
are not as easy to identify, but appear to develop in the
larger networks near the centre of the maps at the inter-
section of opposing pinwheel structures.



4.1.3 Processing Features

Through the early stages of the visual pathway, the retina,
LGN, and primary visual cortex, there is a sequential pro-
cessing being conducted. The processing function of the
retina is to adapt to local illumination levels and thereby
highlight the edges in the image data [17]. This task is
accomplished by passing the image through the centre-
surround RFs of the ganglion cells that reduce the lat-
eral redundancy of contrast information leaving predom-
inantly edge information. We simulate this process by
inputting raw image paxels to a Kohonen SOM network,
representing the retinal cells. The processing of the net-
work results in the weights converging to the first eigen-
paxel dimension of the image, demonstrating how the
cells have become sensitive to this dimension.

The processing stream continues from the retina to the
primary visual cortex via the LGN. No visual processing
occurs in the LGN. In the primary visual cortex, the in-
formation is passed to the cortical cells. The role of the
primary visual cortex in the visual processing stream is
to refine the visual information further, highlighting the
line orientation characteristics of the data. Thus the cells
are specific for oriented lines, and their RFs are designed
to respond to these stimuli. This process is simulated by
subtracting the component of the first eigenpaxel from
the image and inputting this filtered image to the net-
work, and then subtracting the components of the second
and third eigenpaxels from the image for the new input.
The result is of oriented lines and edges arranged topo-
graphically in the map. The cells are sensitive to lines
and edges and thus are able to extract this contour in-
formation from the data, so that cells in higher cortical
areas can proceed to extract more complex details such
as texture and colour. Each stage then acts as a filter of
the image data, removing a low-order eigenpaxel compo-
nent from the image to allow the remaining features to be
highlighted.

5 Concluding Remarks
While other techniques have required specific cost func-
tions or features to be optimized, our approach is one that
is less controlled. Although we detail the eigenpaxel al-
gorithm, the active role that eigenpaxels play in the simu-
lation is limited to filtering the input. We do begin, how-
ever, with a network that uses unfiltered raw image in-
put. The act of filtering represents the data processing in
each stage of the visual pathway. The maps that evolve
then are purely the result of the network analyzing and
adjusting its weights to the input image data. As simi-
lar results have been attained using a modified Földiák
network based on Hebbian learning [17], the influence
of the competitive learning process used here to gener-
ate these results is diminished. The network grows and

tunes itself, organizing in a topographic manner and de-
veloping its individual properties through the course of
information sharing between neighbouring cells. What
we have shown is that a SOM will converge to the princi-
pal components of natural images, and the weights of the
array will distribute themselves along these dimensions.
From the organization and structure of the weight plots,
we draw similarities to existing properties of cortical cell
structure and organization.

As a comprehensive and functional model of the pri-
mary visual cortex, there are obviously several facets in
which this model is incomplete. Architectural character-
istics such as ocular dominance have not been accounted
for. Cortical cell characteristics such as direction selec-
tivity or orientation tuning bandwidths have not been ad-
dressed either. The goal of this research was to examine
the extent to which eigenpaxels could be used to interpret
characteristics of low-level vision. We put forth this idea
in an attempt to provide insight into the neural mecha-
nism in the brain.
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