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Abstract

A method to compute certainties for low level operations
such as averaging and derivation is presented. Based
on a local signal model we identify convolution with a
weighted least squares fit of this model to the data. The
residual of the fit is then converted via its probability den-
sity function into a certainty (probability) that the ob-
served signal can actually be described by the chosen
model. The concept is illustrated on a few examples and
it is shown how the obtained certainties may be used in
further processing steps.
Keywords: signal models, certainty measure

1 Introduction
It has often been pointed out that in order for an algorithm
to be useful in practice it should also produce some infor-
mation about the quality of the computed results [1, 3].
While this is usually done for more complex operations
such as orientation and velocity estimation such a proce-
dure is not often applied on the very fist processing level,
such as smoothing and derivative estimation. In this pa-
per we present a method to assign certainties to such es-
timates based on how well local signal models describe
the data. This is quite general as any linear filter can be
identified with a least squares fit of some model.

Examples for the use of local signal approximations
are the facet model [4] and polynomial expansion [2]. In
contrary to these approaches we are not primarily inter-
ested in a good signal approximation here but rather aim
to assign a statistically sound certainty measure to stan-
dard low level operations. Another difference is that we
focus on very local, typically3× 3, approximations. For
larger areas we integrate such local measurements in a
second step utilizing the associated certainties.

Paper organization: Section 2 reviews the connec-
tion between least squares and convolution. In Sect. 3 it
is shown how the residual can be estimated and converted
into a probabilistic certainty measure (Sect. 3.2). Section
4 gives some results and illustrates how such information
might be used in further processing steps.

2 Least Squares and Convolution
We begin by analysing the relationship between least
squares estimation and convolution and show that they
are essentially identical. A least squares problem is often
defined as:

min
p

‖Ap− s‖2 , (1)

whereA is a given model matrix,s is a vector of noisy
observations andp is the sought parameter vector. Ifs
has uniform independent Gaussian noise the solution is
given by:

p = A+s , (2)

whereA+ denotes the pseudo-inverse. This general for-
mulation also holds in the case of a rank deficient model
matrix, in this case the minimum norm solution will be
computed from the infinite number of solutions. How-
ever, in the following we will concentrate on the case
whereA has full column rank. Then the pseudo-inverse
becomes:

A+ = (AT A)−1AT . (3)

In any case we obtain the parameter vector by multiplying
the pseudo-inverse to the data vector. In terms of signal
processing this is nothing but a correlation of the signal
with the kernelsai, which are the rows ofA+. Convolu-
tion kernels are readily obtained as the mirrored kernels.

Consider a simple 1D example where we approximate
the signal by its mean and derivative value:

s̃ = sm + sxx . (4)

In a three point neighbourhood this can be written as:

s̃ =

 s1

s2

s3

 =

 sm − sx

sm

sm + sx

 =

 1 −1
1 0
1 1


︸ ︷︷ ︸

A

[
sm

sx

]
︸ ︷︷ ︸

p

.

(5)
Forming the pseudo-inverse we obtain:

(AT A)−1AT =
[

1
3

1
3

1
3

− 1
2 0 1

2

]
. (6)



Hence the mean is computed by a simple Box filter and
the derivative by a central difference filter.

2.1 Weighted Least Squares

Clearly it is often advisable to give more influence to
some points than to others. Either because of their dis-
tance to the evaluation point or because some points are
more reliable than others. The more general normal-
ized convolution method actually uses the product of both
[9]. In order to do so we will introduce a weight on
each equation given by a diagonal weight matrixW =
diag(wi). The minimization is performed with respect to
the weighted least squares norm:

min
p

‖s−Ap‖2
W = (s−Ap)T W (s−Ap) . (7)

The solution then becomes:

p = (AT WA)+AT Ws . (8)

Note that usually we can use the inverse instead of the
pseudo-inverse here. However, even ifA has full column
rank the weights might be such that(AT WA) does not
have full rank anymore.

If we use Binomial weightsw1 = 0.25;w2 =
0.5;w3 = 0.25 in the above 1D example we obtain:

(AT WA)−1AT W =
[

1
4

1
2

1
4

− 1
2 0 1

2

]
. (9)

The derivative filter remains unchanged but the mean is
now computed using a Binomial instead of a Box filter.
Somewhat more interesting is the 2D case, a linear model
corresponds to a plane fit:

s̃(x, y) = sm + sxx + syy . (10)

In order to apply the formalism we form the signal vector
of the considered neighbourhood by stacking the columns
after each other. We will use Binomial weights:

1
16

 1 2 1
2 4 2
1 2 1

 → w =
1
16

[1 2 1 2 4 2 1 2 1]T , (11)

and W = diag(w). The filters contained in the rows
of (AT WA)−1AT W are the Binomial average and the
Sobel filter in x and y direction (rearranged in 2D):

1
16

 1 2 1
2 4 2
1 2 1

 ;
1
8

 −1 0 1
−2 0 2
−1 0 1


and

1
8

 −1 −2 −1
0 0 0
1 2 1

 . (12)

Similarly does a quadratic model

s̃(x, y) = sm+sxx+syy+
1
2
[x y]

[
sxx sxy

sxy syy

] [
x
y

]
,

(13)
lead to additional second order derivative filters. In gen-
eral we obtain a derivative of Gaussian filter for a poly-
nomial signal model and Gaussian weights.

Note that even for other filters we can compute a cor-
responding modelA and weightsW . However this de-
composition is usually not unique.

3 Residuals
As seen before the application of a linear filter can be
regarded as a least squares fit of some model. Hence it is
of great interest how well the fitted model describes the
data. In other words we want to establish a certainty in
the output as well as the parameter values.

If the signal model is given byAp = s̃ then the
model parameters are obtained from (8) which we rewrite
in terms of the dual basis:

p = B̃
T
s with B̃ = WA(AT WA)+ . (14)

The deviation of the signal from the models̃ in each point
can be captured in an error vector:

e = s̃− s = AB̃
T
s− s = (AB̃

T − I)︸ ︷︷ ︸
R

s . (15)

The elements ofe can thus be computed by a correla-
tion with the rows ofR. From the elements ofe we can
also compute a local error histogram. However this is not
exploited further in this contribution.

Probably the most important quantity is the residual
of the fit. If we are only interested in this mean squared
error, we can directly compute it in the applied norm:

r = |e|2W = eT We = (Rs)T W (Rs)
= sT RT WR s = sT Qs , (16)

which is a quadratic form defined byQ.

3.1 Implementation

When implementing the above ideas it is advantageous
to analyse the filter structure in more detail. We focus on
the computation of the residual here.

From a generalization of the formula for the variance:
σ2 = x̄2−x̄2 we can compute the residual with only very
little overhead without having to use the quadratic form
Q explicitly. We rewriter as:

r = |s− s̃|2W = (s− s̃)T W (s− s̃)
= sT Ws + s̃T Ws̃− 2sT Ws̃ . (17)
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Figure 1: Residual distributions on a constant signal, the two curves correspond toσ2 = 0.5 and σ2 = 1.5. Using uniform
weights for different signal models in a3 × 3 neighbourhood:a constant,b linear andc quadratic. Using Binomial weights:d
constant,e linear andf quadratic model.

The third term can be rewritten using Eq. (8)sT WA =
(AT Ws)T = [(AT WA) p]T = pT (AT WA) and
thus becomes:

sT Ws̃ = sT WAp = pT (AT WA)p = s̃T Ws̃ .
(18)

Inserting s̃ = Ap also in the second term of (17) we
finally obtain:

r = sT Ws− pT (AT WA) p . (19)

As W is diagonal the first term is the weighted average
of the squared signalsT Ws =

∑
i ωis

2
i . The second

term can easily be evaluated asAT WA can be computed
beforehand. At least for constant weights.

3.2 Certainty

Let’s assume the noise in the signal to be zero mean
Gaussian with varianceσ2. In computer vision applica-
tions it is common to assume a constant noise variance,
however it is sometimes necessary to allow the noise to
be spatially varying. This should either be taken into ac-
count in the weight matrix or by a preprocessing step.

If the model describes the data exactly the deviation
in each point is caused solely by the signal noise. If we
fit a model withm parameters in a neighbourhood ofn

pixels the sum of the normalized squared errors:

x =
n∑

i=i

e2
i

σ2
i

=
1
σ2

n∑
i=i

e2
i , (20)

follows aχ2-distribution withn−m degrees of freedom.
We now consider the case of equal weights, i.e. a Box
filter, ωi = 1

n . Then the residualr = σ2

n x follows a
scaledχ2-distribution [8] (dx = n

σ2 dr):

p(r) =
n

σ2
χ2

n−m(
n

σ2
· r) . (21)

This distribution together with the experimentally ob-
tained residual distribution is shown for a few examples
in Fig. 1. While we have have perfect agreement for uni-
form weights as expected, there is a slight deviation oth-
erwise that depends on the non-uniformity of the weights.
In the later experiments we concentrate on the3 × 3 Bi-
nomial filter. In this case the agreement is sufficiently
good. Hence we won’t consider the more general case of
arbitrary weights here.

When the model does not describe the data the ob-
served residual distribution will not be given by (21). An
example of a constant model applied to a linearly vary-
ing signal is shown in Fig. 2a. Using the linear model on
the same data does again yield good agreement between
theoretical and experimental distribution, see Fig. 2b.
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Figure 2: Residual distributions on a linear signal, evaluated
in a 3 × 3 neighbourhood, forσ2 = 0.5 andσ2 = 1.5. Using
Binomial weights and a constanta , and linear modelb .

The expectation value ofr is given by:

E(r) =
∫ ∞

0

r p(r)dr =
∫ ∞

0

σ2

n
xχ2

n−m(x) dx

= σ2 n−m

n
, (22)

where we useddr = σ2

n dx and that the expectation of
the χ2-distribution is given by the degrees of freedom
(E(x) = n − m). For the variance we obtain, see Ap-
pendix A for details:

V (r) =
∫ ∞

0

[r − E(r)]2 p(r)dr

= 2(n−m)
σ4

n2
. (23)

The probability that an observed residual valuea is com-
patible with the model hypothesis is given by:

p(a) =
∫ ∞

a

p(r)dr = 1−
∫ a

0

p(r)dr . (24)

Insertingp(r) from (21) yields:

p(a) = 1−
∫ a

0

n

σ2
χ2

n−m(
n

σ2
· r)dr

= 1−
∫ n

σ2 a

0

χ2
n−m(x)dx , (25)

which is readily computed using the well tabulated cu-
mulativeχ2-distribution. This probability can directly be
used as a certainty measure for the applied model. The
thus obtained certainty as a function of the residual is
shown in Fig. 3.

4 Experiments
We show the computed certainty for some test images
in Fig. 4. For these images the actual noise level is not
known and we chooseσ2 = 1 which is reasonable for
standard CCD cameras [6].
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Figure 3: Certainty as a function of the residual for different
models and noise levels on a3× 3 neighbourhood.

As one would expect, a higher order model can cap-
ture more variation and in general results in higher cer-
tainties. Increasing the neighbourhood size leads to larger
low certainty areas near edges. However it also seems to
distinguish better between uniform regions. The certainty
is clearly lower at edges and in strongly textured regions.

We have shown how to compute the residual of funda-
mental low level estimates such as the mean, first and sec-
ond derivatives and will now discuss some possible use of
this information. In general it is of course very valuable
to have information about the certainty of a given esti-
mate. It can either be used directly for image enhance-
ment, segmentation or edge/corner detection (Sect. 4.2).
Additionally certainty information can be very useful for
any further processing that combines the low level esti-
mates into a higher order feature. Typical examples are
the estimation of local orientation and optical flow.

4.1 Orientation Estimation

We denote the image derivatives bysx andsy. The sam-
ple covariance matrix of the gradient, also called structure
tensor, is given by:

T =
[

< s2
x > < sx · sy >

< sx · sy > < s2
y >

]
(26)

where< · > denotes a local average, here computed by
convolution with a Gaussian kernelG: < x >= G ∗ x.
Local orientation can be obtained from the eigenvector to
the larger eigenvalue. In 2D the corresponding angle, in
double angle representation, is given by [7]:

tan(2φ) =
2 < sx · sy >

< s2
y > − < s2

x >
. (27)
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Figure 4: Example certainties. Columna shows the used images and columnsb -d the certainty for a constant, linear and quadratic
model applied in a3×3 neighbourhood using Binomial weights. Columnseandf show the certainty using5×5 Gaussian (σ = 3)
weights for a constant and quadratic model respectively.

The certainty can easily be incorporated by replacing the
average in (26) with a normalized average [3]:

< x >n=
G ∗ (c · x)

G ∗ c
. (28)

Figure 5 shows two examples with and without incorpo-
rating the certainty. There clearly is an improvement at
image discontinuities, in the first example the disconti-
nuity even vanishes completely. However in order not to
average derivatives from both sides of the discontinuity
the integration kernel can only be as large as the model
neighbourhood. In the shown results we used a 3 tap
Gaussian withσ = 1. For larger integration areas we
will need to incorporate the presented ideas into a robust
estimation scheme.

4.2 Corner and Edge Detection

We already saw in the examples given in Fig. 4 that the
certainty nicely drops near edges and corners. In a sim-
ilar fashion does the widely used Harris corner measure
[5] employ a residual measure. This and the related mea-
sure given by Noble [10] essentially detect points where
the determinant of the structure tensor (26) is high. For
simple, i.e. only varying in one direction, signals this de-
terminant is zero, hence we observe that they essentially
measure the residual of a signal model that is constant in
one direction.

However in order to detect edges and corners it is
favourable to use the residual rather than the certainty.
Due to statistical fluctuations the latter can sometimes
even be small without the the presence of an edge. The
residual is shown in Fig. 6 for a range of[0 4σ2]. Values
higher than4σ2 correspond to a clear model violation.
Constant and linear model violations correspond to step
edges, which can apparently be captured by a quadratic
model. The failure of the quadratic model on the other
hand corresponds to corners. Yet from Fig. 6d we ob-
serve that the distinction between corners and noise is not
as clear as it is for the edges.

5 Conclusion

We showed how certainties can be attributed to common
low level image processing operations. It has been il-
lustrated that such information can be used to detect dis-
continuities, namely edges and corners, and thus for im-
age segmentation. We also showed that the incorporation
into further processing steps such as orientation estima-
tion can make these estimates more robust in the presence
of discontinuities.

Future work includes quantitative investigations to
what respect the use of such low-level certainties can im-
prove known algorithms for image enhancement, orien-
tation and velocity estimation, edge and corner detection.
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Figure 5: Orientation estimation:a test images,b orientation
angle without using certainty andc incorporating the certainty.

A Residual Variance
The variance of the residualr = σ2 x

n is defined as:

V (r) =
∫ ∞

0

(r − E(r))2 p(r)dr

=
∫ ∞

0

(r − n−m

n
σ2)2

n

σ2
χ2

n−m(
n

σ2
r) dr

Changing the variable tox = n
σ2 r yields:

V (r)=
∫ ∞

0

(
σ2

n
x− n−m

n
σ2)2 χ2

n−m(x) dx

=
σ4

n2
E(x2)− 2

σ4

n2
(n−m)E(x) +

σ4

n2
(n−m)2,

where we used
∫

χ2 = 1 in the last term. The expectation
of x is E(x) = n − m and that ofx2 can be determined
from V (x) = E(x2)− (E(x))2. With V (x) = 2(n−m)
we getE(x2) = (n−m)2 +2(n−m). Hence we obtain:

V (r)=
σ4

n2
[(n−m)2 + 2(n−m)− 2(n−m)2 + (n−m)2]

= 2(n−m)
σ4

n2
.
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