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Abstract 2 Least Squares and Convolution

A method to compute certainties for low level operation¥Ve begin by analysing the relationship between least
such as averaging and derivation is presented. Basegfluares estimation and convolution and show that they
on a local signal model we identify convolution with aare essentially identical. A least squares problem is often
weighted least squares fit of this model to the data. Théefined as:

residual of the fit is then converted via its probability den- min || Ap — s||?, D)

sity function into a certainty (probability) that the ob- . ) P . i
served signal can actually be described by the choséif€reA is a given model matrixs is a vector of noisy
model. The concept is illustrated on a few examples arffPservations ang is the sought parameter vector. sf
it is shown how the obtained certainties may be used ila_as uniform independent Gaussian noise the solution is

further processing steps. given by: .

Keywords: signal models, certainty measure p=A"s, )
whereA™ denotes the pseudo-inverse. This general for-

1 Introduction mulation also holds in the case of a rank deficient model

matrix, in this case the minimum norm solution will be
It has often been pointed out that in order for an algorithrsomputed from the infinite number of solutions. How-
to be useful in practice it should also produce some infoever, in the following we will concentrate on the case
mation about the quality of the computed results [1, 3jwhere A has full column rank. Then the pseudo-inverse
While this is usually done for more complex operationdecomes:
such as orientation and velocity estimation such a proce- At =(ATA)TAT . 3)

dure is not often applied on the very fist processing Ievelh any case we obtain the parameter vector by multiplying

such as smoothing and derivative estimation. In this Pdhe pseudo-inverse to the data vector. In terms of signal

Er?]ra\?:aespt)r:ggtoirﬂ?)\t/c(\)/:/jetlflsizgs? Cr?;mngﬁsto dzzzzb%esrbcessing this is nothing but a correlation of the signal
the data. This is quite general as a?n linear filter can With the kernelsa;, which are the rows oft ™. Convolu-
) N d g : y tﬁaon kernels are readily obtained as the mirrored kernels.
identified with a least squares fit of some model.

) L Consider a simple 1D example where we approximate
Examples for the use of local signal approximationsg, signal by its mean and derivative value:
are the facet model [4] and polynomial expansion [2]. In '

contrary to these approaches we are not primarily inter- 5=5,+ s.. (4)
ested in a good signal approximation here but rather aim

to assign a statistically sound certainty measure to statt a three point neighbourhood this can be written as:
dard low level operations. Another difference is that we

focus on very local, typically x 3, approximations. For _ 51 m = Sa -l Sm,

larger areas we integrate such local measurements irfa | °2 | = Sm =0 [ Sz ] '

second step utilizing the associated certainties. 53 Sm T+ Sa Pl eV
Paper organization: Section 2 reviews the connec- A P

tion between least squares and convolution. In Sect. 3it , , ()

is shown how the residual can be estimated and convertE@Ming the pseudo-inverse we obtain:

into a probabilistic certainty measure (Sect. 3.2). Section 101 1

4 gives some results and illustrates how such information (ATA)TAT = { o2 } : (6)

2 2

might be used in further processing steps.



Hence the mean is computed by a simple Box filter an8imilarly does a quadratic model
the derivative by a central difference filter.

= _ 1 Sex  Say x
S(l’,y) - SnL+szx+3yy+§[l’ y] s, s y s
2.1 Weighted Least Squares vy Syy (3)

Clearly it is often advisable to give more influence tgead to additional second order derivative filters. In gen-
some points than to others. Either because of their di§fal we obtain a derivative of Gaussian filter for a poly-
tance to the evaluation point or because some points dt@mial signal model and Gaussian weights.
more reliable than others. The more general normal- Note that even for other filters we can compute a cor-
ized convolution method actually uses the product of botfeSPonding modeA and weightsW. However this de-
[9]. In order to do so we will introduce a weight on cOmMposition is usually not unique.
each equation given by a diagonal weight ma#ix = .
diag(wi()l. The mgi'nimiza){ion is gerformedgwith respect to3 Residuals
the weighted least squares norm: As seen before the application of a linear filter can be
. regarded as a least squares fit of some model. Hence itis

min s = Apliy = (s — Ap)"W(s — Ap) . (7) ofggreat interest howc\]/vell the fitted model describes the
data. In other words we want to establish a certainty in
The solution then becomes: the output as well as the parameter values.
If the signal model is given bydp = s then the

o T 4+ AT
p=(A"WATAWs. (8) model parameters are obtained from (8) which we rewrite
Note that usually we can use the inverse instead of {8 terms of the dual basis:
pseudo-inverse here. However, evedihas full column _ g7 with B=wAATW A+ 14
rank the weights might be such thed” W A) does not P y ( A
have full rank anymore. The deviation of the signal from the mod&ih each point
If we use Binomial weightsw; = 0.25;w2 = can be captured in an error vector:

0.5; w3 = 0.25 in the above 1D example we obtain: . .
e=5-5s=AB s—s=(AB —I)s. (15)
———
} .9 R

el N1
D[ = =

1
(ATWA)'A™W = { A

2
L . The elements o& can thus be computed by a correla-
The derivative filter remains unchanged but the mean Fon with the rsows ofR Flch?m the eIe?]L:ents csze can

gzvr\;gow:turfgr:'sr:?(gr:sanqsmtﬁ:aIgSDIideOfaal'r?g;(rfrlrlrggallso compute a local error histogram. However this is not
corresWon ds to al lane f'lt-g ' al gxploited further in this contribution.
P P it Probably the most important quantity is the residual

of the fit. If we are only interested in this mean squared

5(x,y) = S + Sy + : 10 . - .
S(@y) = Sa® T Sy (10) error, we can directly compute it in the applied norm:
In order to apply the formalism we form the signal vector 9 T T
of the considered neighbourhood by stacking the columns "~ ‘eT|WT: e We :T(Rs) W(Rs)
after each other. We will use Binomial weights: = s RRWRs=s Qs, (16)
. 1 2 1 1 which is a quadratic form defined 6.
— 12 4 2| -w=-—[121242121]", (12)
16| 1 5 4 16

3.1 Implementation

and W = diagw). The filters contained in the rows When implementing the above ideas it is advantageous
of (ATW A)~' ATW are the Binomial average and theto analyse the filter structure in more detail. We focus on

Sobel filter in x and y direction (rearranged in 2D): the computation of the residual here.
From a generalization of the formula for the variance:
1|21 1| -1 01 o2 = 2 — 72 we can compute the residual with only very
16 2 4 20 3 -2 0 2 little overhead without having to use the quadratic form
21 -1 0 1 Q explicitly. We rewriter as:
-1 -2 -1
and 21 0 0 o0 |. (12 ro= ls=dly =(s-38)"W(s-3

12 1 = sTWs+5Ws—2s"Ws. (17)



Figure 1: Residual distributions on a constant signal, the two curves correspord te: 0.5 ando® = 1.5. Using uniform
weights for different signal models in3ax 3 neighbourhood:a constantb linear andc quadratic. Using Binomial weightsd
constantg linear andf quadratic model.

The third term can be rewritten using Eq. @)W A =  pixels the sum of the normalized squared errors:

(ATWs)T = [(ATWA)p|T = pT(ATWA) and . .

thus becomes: e; 1 2
IZZ;Z_Q:;Z&:, (20)

sTW5=s"TWAp=p"(ATWA)p=5"W5s.
(18) follows ay?-distribution withn — m degrees of freedom.
Insertings = Ap also in the second term of (17) we We now consider the case of equal weights, i.e. a Box
finally obtain: filter, w; = 1. Then the residuat = "{x follows a
scaledy?-distribution [8] dz = 2 dr):
r=s"Ws—pT(ATWA)p. (19) o

P(r) = 25 (5 1) - (22)

i This distribution together with the experimentally ob-
term can easily be evaluated 4$ W' A can be computed  tained residual distribution is shown for a few examples

As W is diagonal the first term is the weighted average
of the squared signad” Ws = Y. w;s?. The second

%

beforehand. At least for constant weights. in Fig. 1. While we have have perfect agreement for uni-
form weights as expected, there is a slight deviation oth-
3.2 Certainty erwise that depends on the non-uniformity of the weights.

In the later experiments we concentrate onihe 3 Bi-

Let's assume the noise in the signal to be zero mearomial filter. In this case the agreement is sufficiently
Gaussian with variance®. In computer vision applica- good. Hence we won't consider the more general case of
tions it is common to assume a constant noise variancaxbitrary weights here.
however it is sometimes necessary to allow the noise to When the model does not describe the data the ob-
be spatially varying. This should either be taken into acserved residual distribution will not be given by (21). An
count in the weight matrix or by a preprocessing step. example of a constant model applied to a linearly vary-

If the model describes the data exactly the deviatioing signal is shown in Fig. 2a. Using the linear model on
in each point is caused solely by the signal noise. If wéhe same data does again yield good agreement between
fit a model withm parameters in a neighbourhoodrof theoretical and experimental distribution, see Fig. 2b.
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Figure 2: Residual distributions on a linear signal, evaluated
in a3 x 3 neighbourhood, for® = 0.5 ando® = 1.5. Using

Binomial weights and a constaat, and linear modeb .

01t “\ 1
The expectation value ofis given by: o5 Lo lza - - = .
residual
[e'e] o0 0_2 9
Be) = [ rptndr= [T a0 da
0 o N
n—m
= 027

)

Figure 3: Certainty as a function of the residual for different
n

22) models and noise levels orBax 3 neighbourhood.

where we usedr = %de and that the expectation of ; As one WO.UI(.j expect,. a higher order m(')del. can cap-
the x2-distribution is given by the degrees of freedom ure more variation and n general resul_ts in higher cer-
(E(z) = n —m). For the variance we obtain, see Ap_talntles. Increasing the neighbourhood size leads to larger
pendix A for details:

low certainty areas near edges. However it also seems to
distinguish better between uniform regions. The certainty
o0 ) is clearly lower at edges and in strongly textured regions.
/O [r — E(r)]" p(r)dr We have shown how to compute the residual of funda-
mental low level estimates such as the mean, first and sec-
(23) ond derivatives and will now discuss some possible use of
this information. In general it is of course very valuable
The probability that an observed residual vaitis com- to have information about the certainty of a given esti-
patible with the model hypothesis is given by: mate. It can either be used directly for image enhance-
ment, segmentation or edge/corner detection (Sect. 4.2)
/°° p(r)dr = 1— /“ p)dr . (24) Additionally certainty information can be very useful for
a 0

any further processing that combines the low level esti-

Vi(r)

4
o
= 2(n-— m)ﬁ

p(a)

Insertingp(r) from (21) yields:

mates into a higher order feature. Typical examples are
the estimation of local orientation and optical flow.
Yo, n
pla) = 1- /0 o2 Xnom (o5 -r)dr 4.1 Orientation Estimation
(T’—fza
- [T e, @)
0

We denote the image derivatives by ands,. The sam-

ple covariance matrix of the gradient, also called structure
o _ _ tensor, is given by:

which is readily computed using the well tabulated cu-

mulative y2-distribution. This probability can directly be

. . T— <82 > < 8y 8y > (26)

used as a certainty measure for the applied model. The < 8y 8y > <sl>

thus obtained certainty as a function of the residual is

shown in Fig. 3. where< - > denotes a local average, here computed by
_ convolution with a Gaussian kernél: < x >= G * x.

4 EXperiments

Local orientation can be obtained from the eigenvector to
] ] the larger eigenvalue. In 2D the corresponding angle, in
We show the computed certainty for some test images, ple angle representation, is given by [7]:
in Fig. 4. For these images the actual noise level is not
known and we choose? = 1 which is reasonable for 2< 8,8y >
standard CCD cameras [6]. tan(2¢) = < Sf, >—<s82> 27)




Figure 4: Example certainties. Columasshows the used images and colurbrd the certainty for a constant, linear and quadratic
model applied in 8 x 3 neighbourhood using Binomial weights. Coluner@df show the certainty usingx 5 Gaussian§ = 3)
weights for a constant and quadratic model respectively.

The certainty can easily be incorporated by replacing the However in order to detect edges and corners it is
average in (26) with a normalized average [3]: favourable to use the residual rather than the certainty.
Due to statistical fluctuations the latter can sometimes
M ) (28) even be small without the the presence of an edge. The
Gxc residual is shown in Fig. 6 for a range [0f402]. Values
Figure 5 shows two examples with and without incorpohigher thando? correspond to a clear model violation.
rating the certainty. There clearly is an improvement aConstant and linear model violations correspond to step
image discontinuities, in the first example the discontiedges, which can apparently be captured by a quadratic
nuity even vanishes completely. However in order not tenodel. The failure of the quadratic model on the other
average derivatives from both sides of the discontinuitjland corresponds to corners. Yet from Fig. 6d we ob-
the integration kernel can only be as large as the modsérve that the distinction between corners and noise is not
neighbourhood. In the shown results we used a 3 tags clear as it is for the edges.
Gaussian withv = 1. For larger integration areas we

will need to incorporate the presented ideas into a robust )
estimation scheme. 5 Conclusion

< T >p=

d Ed . We showed how certainties can be attributed to common
4.2 Corner and Edge Detection low level image processing operations. It has been il-
We already saw in the examples given in Fig. 4 that thiistrated that such information can be used to detect dis-
certainty nicely drops near edges and corners. In a sirfiontinuities, namely edges and corners, and thus for im-
ilar fashion does the widely used Harris corner measuge segmentation. We also showed that the incorporation
[5] employ a residual measure. This and the related melto further processing steps such as orientation estima-
sure given by Noble [10] essentially detect points wheron can make these estimates more robust in the presence
the determinant of the structure tensor (26) is high. Fdi¥f discontinuities.

simple, i.e. only varying in one direction, signals this de- Future work includes quantitative investigations to
terminant is zero, hence we observe that they essentiallshat respect the use of such low-level certainties can im-
measure the residual of a signal model that is constant prove known algorithms for image enhancement, orien-
one direction. tation and velocity estimation, edge and corner detection.



Figure 5: Orientation estimationa test imagesb orientation
angle without using certainty angincorporating the certainty.

A Residual Variance

Figure 6: Edge and corner detectiom test image and residual

The variance of the residual= £ is defined as: ([0 402]) for a constanb, linear ¢ and quadratic moded .
_ = 2 . : .
V(r) /0 (r = E(r))"p(r)dr [2] G. Farnelack. Very high accuracy velocity estima-
o0 tion using orientation tensors, parametric motion,
R B et d simult tation of the motion field
; (r— — 0 ) gxn—m(ﬁﬂ r and simultaneous segmentation of the motion field.

In ICCV, pages 171-177, Vancouver, July 2001.

Changing the variable to = 7 yields: [3] G.H. Granlund and H. KnutssoSignal Processing

for Computer VisionKluwer Academic, 1995.
* g2 n—m 5.9 o
V(r)= (—x— —0%)*x () dax
0

n n n—m [4] R. M. Haralick and L. Watson. A facet model for
o4 o4 o4 image data. Computer Graphics and Image Pro-
= ﬁE(:cz) - 2?(71 —m)E(z) + ?(n —m)?, cessing15(2):113-129, February 1981.

h 5 inthe | h ) [5] C. G. Harris and M. J. Stephens. A combined cor-
where we used x* = 1in the last term. The expectation ner and edge detector. Fourth Alvey Vision Con-
of z is E(x) = n — m and that ofr? can be determined

from V(z) = E(22) — (E(x))?. With V(z) — 2(n —m) ference pages 147-151, Manchester, UK, 1988.

we getE(z?) = (n—m)*+2(n—m). Hence we obtain:  [6] B. Jahne.Practical Handbook on Image Processing
4 for Scientific ApplicationsCRC Press, 1996.
Vir)= 22 [(n— m)2 +2(n—m)—2(n— m)2 + (n— m)2]

[7] B. Jahne.Digital Image ProcessingSpringer, Hei-
o delberg, Germany, 5 edition, 2002.
= 2(n-— m)ﬁ .
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