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Abstract 

A robust skeleton-based graph matching method for 
object recognition and recovery applications is pre-
sented. The object model uses both a skeleton model 
and contour segment models, for object recognition and 
recovery. Initially, the skeleton representation is created 
from the input contour that is provided by a deformable 
contour method (DCM). The skeleton is then matched 
against a set of object skeleton models to select a candi-
date model. Corresponding feature points or landmarks 
on the input and model contours are determined from 
their skeletons automatically. Based on the landmarks, 
the input and model contours are broken into contour 
segments. The input contour segments are then matched 
against the corresponding model segments for error 
analysis. For any large error in the segment mismatch, a 
fine-tuning process is performed to enhance the final 
segmentation result. The skeleton-based shape matching 
algorithm is illustrated by using a set of animal silhou-
ette examples. Experiments of object recovery using 
real biomedical image samples, such as MRI knee and 
brain’s corpus callosum images, have shown satisfac-
tory results. 

1 Introduction 

Image understanding plays an important role in image 
analysis and computer vision applications. Generally it 
includes two key interrelated components: image 
segmentation and object recognition. As shown in 
Figure 1, the segmentation process yields contours, 
either exact or approximate, of objects of interest in 
images for object recognition. The object recognition 
process performs shape matching and the results can be 
fedback into the image segmentation process to increase 
the accuracy of the segmentaton results. This is 
normally referred to as object recovery. The work of 
this paper is focused primarily on the object recognition. 
 
 
 
 
 
 
 
 

The object recognition is realized through shape 
matching, by matching the skeleton graph of the input 
contour from a DCM with those of the models. The 
“best” matching skeleton pair determines the correct 
model and constructs the contours’ landmark corre-
spondences. The correspondences of the contours’ seg-
ments follow automatically. Then, for the contour seg-
ments with a large error when compared with the 
matched model segments, a fine-tuning process, which 
is formulated as a maximization of a posteriori probabil-
ity [4], is performed for final result. Two kinds of repre-
sentations: skeleton model and contour segments model 
are involved. The skeleton model is constructed for 
shape matching and object recognition, and the contour 
segments model is for fine-tuning the final result. Both 
models are used in a complementary fashion.  

The objective of this paper is to present a new skele-
ton-based shape matching approach, incorporating the 
correspondence of the skeleton edges to contour seg-
ments for shape matching and object recognition, yield-
ing a robust and efficient model-based object recovery. 
This also provides a good alternate means to alleviate 
difficulties encountered in segmentation problems and 
to refine the results obtained from DCMs for complex 
image segmentation problems. Section 2 briefly reviews 
the DCMs for segmentation, object shape representa-
tions, and shape matching and object recognition meth-
ods. Section 3 gives the algorithm description. Experi-
mental results on matching animal profiles for recogni-
tion and recovering shapes in biomedical images, are 
provided in Section 4. Section 5 draws the conclusions. 

2 Background 

One of the most advanced and popular image segmenta-
tion methods is the DCMs [1][2][12]. Recent progress 
in DCMs has advanced the state of the art significantly. 
However, contour extraction for detailed object recov-
ery still remains a challenge when the contour is not 
readily present due to gaps, blur contour segments, or 
complex shapes. Furthermore, many challenges for the 
DCMs such as the selection of the initial contour, the 
geometric invariance for using models, the stopping 
criteria, parameter tuning, and other challenges remain. 
Nevertheless, DCMs can in most cases extract the de-
sired object boundary, or a good approximation, which 
can then be used as the input contour for object recogni-
tion. Model-based DCMs can be formulated as snakes 
[13][14], level set methods [15][16][17] and parametric Figure 1: Image understanding process 
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deformable models [4][5][6][11]. The a priori knowl-
edge of object shape is either embedded into the snake 
energy function [13][14] or the contour deformation 
velocity [15][16][17] to constrain the admissible defor-
mation range. Parametric deformable models are com-
monly used when the a priori shape knowledge of the 
object of interest is available and can be represented by 
a small number of parameters with certain distributions.  

There are several well-established object shape rep-
resentations [27]. They include chain code (CC), B-
spline (BS), Fourier descriptors (FD), Wavelet descrip-
tors (WD), and skeleton (SK). The skeleton representa-
tion consists of the locus of centers of maximal disks 
(CMDs) that can be inscribed within the object and a 
maximal disk is not completely contained in any other 
disk totally included in the object. Different from the 
boundary-based object representation methods (CC, BS, 
FD and WD), skeleton is a region-based method, which 
emphasizes the structural properties that go beyond 
simple boundaries, e.g., location of convex-parts, width 
and length of each part. A variety of methods 
[18][19][20] were proposed to compute the object skele-
ton, and the thinning [18] and distance transformations 
(DT) based methods [19][20] are the most popular.  

Selecting an appropriate object shape representation 
is a crucial problem for object recognition and recovery 
applications. The desired representational properties 
include: uniqueness (UNI), invariance to object geomet-
ric transformations (translation (T), rotation (R), and 
scaling (S)), noise robustness (NR), complexity (CM), 
reversibility to the original shape (RV), and multi-scale 
(MS). Table 1 compares these representations in terms 
of the desired properties. As this table indicates, skele-
ton provides many significant features suitable for our 
purpose except the low noise robustness. However, this 
problem can be easily solved without adding a signifi-
cant number of additional computations to our algo-
rithm. Moreover, skeleton is the only representation 
method providing object structural information as men-
tioned above, which is important for object shape 
matching. Therefore, skeleton was selected for our ap-
proach. 

 
Traditionally there are three kinds of shape matching 

methods: template matching, statistical classification 
and structural classification [27]. Template matching is 
the simplest shape identification method by comparing 
the input shape to a list of stored shape representations 
(templates), which is usually formulated as a parame-
terization problem, with a cost function to be minimized 

[21][22]. It generally can handle only simple cases 
where there is only a small geometric variation between 
the input shape and templates. Statistical approaches use 
only a set of selected shape measures or features that are 
more resilient to shape variations [6][23][24] to match 
shapes. Our previous work [6] proposed a curvature 
based contour matching approach that is simple to im-
plement and invariant to object geometric transforma-
tions. However, it can’t match complex shapes because 
curvature is a local description and sensitive to noise. 
Sclaroff et al. [23] proposed a modal matching method 
to establish the correspondence of contour feature points 
and to recognize objects based on the eigenmode de-
scription. However, as pointed out in [24], without the 
connectivity information of the contour, the algorithm is 
not guaranteed to generate a legal set of correspon-
dences. Hill et al. [24] proposed a three-step algorithm 
for automatically identifying the landmarks on two 
contours and constructing their correspondences. The 
results are good but the computing complexity is high 
due to its iterative processes in all the three steps. Struc-
tural classification methods select the correct model for 
the input shape by comparing their structure, i.e., their 
respective ordered composition of simple sub-patterns 
or shape primitives. Shapes are represented by such a 
composition of shape primitives. The selection and 
segmentation of shape primitives are not easy, and gen-
erally depend on the preference and experience of the 
user. Zhu et al. [8] constructed skeleton models for 
object recognition. The algorithm computes the similar-
ity between the input and the model for all possible 
matches. The primitive segmentation and parameter 
tuning is sensitive to noise, and it has a high computa-
tion complexity with multiple parameters to be tuned. 
Siddiqi [9] proposed a theory of shock graphs for shape 
representation and matching. The matching algorithm is 
to find the graph nodes correspondences based on the 
topological and geometrical similarity of the corre-
sponding nodes. The shock segmentation algorithm is 
rather complex and sensitive to noise. Both above algo-
rithms are for object recognition purpose, and not well 
suited for shape recovery applications since correspon-
dences on contour landmarks can’t be determined from 
their skeleton edges.  

The proposed skeleton-based shape matching 
method is a combination of both the structural and the 
statistical methods, in which the object skeleton is rep-
resented as an ordered tree (graph without loop) or a 
string of skeleton edges (shape primitives). The connec-
tivity relationship among skeleton edges and the geo-
metrical features of skeleton edges are used for skeleton 
matching and will be explained in the next section. 

3 Proposed Approach 

This skeleton-based shape matching and recovery 
approach can be described in four major steps: (I) 
skeleton processing, (II) skeleton model construction, 

INVARIANCE  UNI CM 

T R S 

NR RV MS 

CC  LOW √   LOW √ √ 

BS  MID √ √ √ HIGH   

FD √ HIGH √ √ √ MID √ √ 

WD √ HIGH  √ √ HIGH √ √ 

SK √ MID √ √ √ LOW √ √ 

Table 1: The comparison of shape representation methods 



(III) skeleton matching and model detection, and (IV) 
contour segment correction, as shown in Figure 2. 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(I) Skeleton Processing 
The first step consists of determining the skeleton, re-
moving noise or unwanted information, and represent-
ing the skeleton. Skeleton computation is normally 
based on the thinning or distance transformation (DT). 
In general, thinning methods produce connected skele-
tons that can’t be used to reconstruct the original object 
shape, while skeletons generated by DT-based methods 
can. However, the latter generally are not connected and 
are sensitive to object boundary noise. To keep the ad-
vantages and overcome the shortfalls of these methods, 
Svensson et al. [7] proposed a new method that is based 
on the idea of iteratively thinning the distance transfor-
mation of an object. The resulting skeleton is connected, 
invariant to object geometric transformations and capa-
ble of reconstructing the object shape, which is suitable 
for object shape matching and recovery applications. 
Therefore, this method is used to compute the skeletons 
for both the input contour and the model contours. 

The notation used for the major skeleton entities is 
illustrated in Figure 3(a) with a skeleton example of a 
side view of a quadruped animal. The curve segments of 
actual skeleton edges are simplified as line segments in 
a skeleton graph. The attributes of a skeletal point on 
the derived skeleton graph are its distance value and if it 
is a CMD or not. A skeletal point having only one skele-
tal point in its eight neighbors is defined as an ending 
node (E-node) (e.g., A, B, E), and a skeletal point hav-
ing at least three skeletal points in its eight neighbors is 
defined as a bifurcation node (B-node) (e.g., C, D, J). 
All others are normal nodes. After the skeleton compu-
tation, skeletal points can be linked to form skeleton 
edges. A skeleton edge (SE) includes all the skeletal 

points between a B-node (or an E-node) and another B-
node. A SE that has two B-nodes is defined as a primary 
SE (e.g. CD and DJ), otherwise it’s a normal SE (e.g. 
AC, BC, ED). 

Skeleton can be pruned based on the importance of 
the skeleton edges. For each normal skeleton edge, we 
can determine its importance by comparing the original 
shape with the shape reconstructed [10] from the skele-
ton without the edge. A large difference in the shapes 
indicates that the edge is important; otherwise, it is due 
to shape noise and can be cut out from the skeleton 
graph. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Only one type of primitive - skeleton edge is used, 
instead of multiple primitives, such as the worm, circle, 
and shocks used in [8][9]. The complexity and 
sensitivity to noise of primitive segmentation algorithm 
is then greatly reduced. For effective processing, the 
skeleton graph is further represented by a tree and a 
string, as shown in Figure 3(b) and 3(c), respectively. A 
B-node tracing algorithm to generate a skeleton tree is 
applied by recording SEs sequentially, starting from the 
B-node connected with the shortest normal SE. The tree 
nodes are the B-nodes, and the tree edges are the 
primary SEs and are underlined in the figure. . 
 
(II) Skeleton model construction 
After the skeleton is computed or constructed, the fol-
lowing three major types of information – rigid trans-
formations, nonrigid deformations, and model specific 
information - can be gathered into the model and used in 
the next matching phase.  
1). Rigid transformations 

a). The admissible connectivity relationship among 
the SEs. This relationship can be parameterized by the 
bifurcation angles, the angles subtended by the adjacent 
SEs (e.g., θ1, θ2 in Figure 4(a)).  

b). The admissible translations of SEs caused by the 
bifurcation delay (BDP)/splitting (BSP) phenomena [8] 
(Figure 4(b)) in the configuration of SEs.  
2). Nonrigid deformations: The object shape variations 
can be described as the Gaussian distribution on the 
distance values of skeletal points.  
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Figure 2: Object recognition and recovery flowchart 
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3). Model specific rules: A typical example would be 
that the limbs should be the protrusions on the same side 
of body for any side-view of quadruped mammals and 
birds. 
 
 
 
 
 
 
(III) Skeleton matching and model detection 
The skeleton matching and model detection algorithm 
encompasses three major steps: searching for possible 
matches or correspondence between the SEs of the input 
skeleton and the skeleton models; checking the validity 
of identified matches based on the model information; 
and computing similarity measure to determine the 
correct model and SE correspondences. 

As a skeleton can be represented as a tree or a string 
comprising all the SEs of the skeleton, the skeleton 
matching problem can be formulated as a graph (tree) 
matching [8][9] or string matching problem 
[13][25][26]. A branch-and-bound string matching 
algorithm is used in our application. In essence, the 
string matching algorithms apply the minimum edit 
operations (substitution, deletion and insertion) to 
transform one string to another string and the associated 
transformation cost can be used to measure the 
similarity between the two strings. The larger the cost, 
the less similar the two strings are. The algorithm 
searches over all possible matches between the two 
strings for the same number and connectivity 
relationship of B-nodes, and the same numbers of 
primary and normal SEs in each matched B-node group 
pair. There could be several matches due to the different 
SE recording order within a B-node group. This process 
repeats between the input skeleton and all models.  

For each match found, several validity checks based 
on the rules and information collected in Step (II) can be 
used. First, we can identify the BDP/BSP in the input 
skeleton according to the model specific information. 
The model specific information is then used to check 
the validity of the input skeleton string representation, 
which is to detect the error of selecting the starting B-
node incorreclty. When an incorrect SE string for the 
input skeleton is generated due to BDP/BSP, the 
algorithm continues with other possible string 
representations in order to satisfy the validity checking. 
Finally, after removing the BDP/BSP, the rigid 
information such as bifurcation angles in the input 
skeleton can be computed. The validity of both the 
BDP/BSPs and the bifurcation angles in the input 
skeleton are then checked by comparing them with 
those of the model.  This process ensures that the SEs 
and B-nodes recording order won’t affect the matching 
result, thus enhances the algorithm robustness. 

The last task in this step is to detect the correct 
model from a set of models passed above checking and 
determining the correct SE correspondences based on a 

similarity function between the input and a model. 
Given an input shape skeleton string D=(d1, d2, … , dR) 
and its corresponding model skeleton string M=(m1, m2, 
… , mR), their similarity function is defined as:  
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the normalized distance values of the jth corresponding 
points on the skeleton edges di and mi, respectively, 
after normalizing the skeleton edges di and mi to be the 
same length N. rdij and rmij are normalized with respect 
to the largest distance value on di and mi. σj is the 
variance of the normalized rmij. In the experiments, we 
use ln(p(di, mi)) instead of p(di, mi) to avoid a very small 
P. To compute the E1, which is to measure the shape 
difference between D and M, the input SE di should be 
transformed first to the coordinate system of its 
corresponding model SE mi as di’. Then they should be 
normalized to have the same length. After the 
transformation and normalization, E1 can be computed 
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(xdij’, ydij’) and (xmij, ymij) are the coordinates of the jth 
corresponding points on di’ and mi, respectively.  The E2 
is to measure the difference of the average thickness 
ratio between D and M, and it is formulated 
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the average distance values of di and mi, rd  and rm  are 
the average distance values of all the skeletal points on 
D and M. The E3 is to measure the difference of the 
length ratio between D and M, and it is formulated 

as: ∑
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lengths of di and mi, ld and lm are the lengths of all the 
skeleton edges of D and M.   

The similarity value is computed for all possible 
matches, and the model that has the largest value with 
certain SE correspondences to the input shape is se-
lected as the correct model. Meanwhile, the SE corre-
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Figure 4: Skeleton model and 
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spondences producing the largest similarity value is 
considered as the correct match between the model and 
the input. When the skeleton of the input shape has 
additional or missing SEs, we only compute the similar-
ity function between the matched SEs. 
 
(IV) Contour segment correction 
The contour landmarks are determined by the E-nodes 
of its SEs. By reconstructing the shape from the 
skeleton with the E-nodes removed, the landmarks are 
then identified from the missing points in the 
reconstructed shape with respect to the original shape. 
These landmarks are then used to determine the contour 
segment correspondences. The corresponding contour 
segments on the input and model contours are compared 
for errors. The error computation is the same as the 
computation of the shape error weight E1, in which the 
skeleton edges are replaced as the contour segments. 

The final contour segment correction for the 
segments with large errors is the same as in [4][6]. 
Given a set of samples, many methods [15][16][17] are 
proposed to construct the object contour model. Our 
contour model is obtained in a similar fashion. First a 
domain expert draws the object boundaries on a set of 
model images and gives a rough alignment on the 
contours. Then the contours are linearly normalized to 
be the same length to compute the mean shape of the 
model. The model variance can also be derived from the 
sample contours using the principal component analysis 
as in [16][17]. However, due to the lack of samples, the 
contour model is obtained by assigning a Gaussian 
distribution on the mean contour which is represented 
by an Elliptical Fourier descriptor as in [4][6].  

4 Experiments 

In this section, two experiments are used to illustrate our 
algorithm: the first experiment uses a set of animal 
silhouette shapes to demonstrating the graph matching 
algorithm for object recognition; the second uses bio-
medical image samples, such as MRI knee and corpus 
callosum images to show the object recovery process.  
 
4.1 Skeleton-based shape matching  
Skeleton-based graph matching for model detection are 
demonstrated by selecting the most similar shape for the 
input test shapes, shown in Figure 5, from a set of 
animal model shapes shown in Figure 6. Both the input 
and the model shapes include several quadruped 
mammals and birds, which were obtained from some 
biology books, photographs, and the Brown University 
Stimuli (http://www.cog.brown.edu/~tarr/stimuli.html). 

As described in Section 3, the skeleton-based shape 
matching process starts from the skeleton processing for 
both the input and model shapes. The skeletons are 
obtained after noise removal and are drawn within the 
shapes in Figure 5 and 6. The skeleton models are 
constructed directly on the model shapes by following 

the algorithm in Step (II) of Section 3. After skeleton 
matching is used to locate the corresponding skeleton 
edges between the input and all the possible models, the 
similarity functions are computed for all valid matches. 
The similarity function computation algorithm firstly 
normalizes the shapes such that the corresponding 
skeleton edges have the same length. Thus the input and 
model shapes can be exchanged without affecting the 
similarity measure between them. Table 2 shows the 
linearly normalized similarity values (0-10), with the 
highest values being shown in boldface. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 (a) (b) (c) (d) (e) (f) (g) (h) 

(1) 8.90 2.79 0.18 0.65 0.64 3.81 - - 
(2) 0.01 4.66 0.01 2.22 1.98 2.05 - - 
(3) 4.45 3.27 0.55 3.70 3.61 0.97 - - 
(4) 5.12 0.28 5.12 0.08 0.06 0.88 - - 
(5) - - - - - - 0.44 2.49 
(6) - - - - - - 1.74 0.86 
(7) - - - - - - 3.94 3.53 
(8) - - - - - - 3.17 3.30 
(9) - - - - - - 4.08 1.70 

 
 
By looking at Table 2, it can be easily seen which 

model the input shape is most similar to. Also, we can 
see that the quadruped mammals don’t match with birds 

 

 
  

   

  

  

(5) bird (6) duck 

(7) cock (8) eagle (9) ostrich 
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(4) lion 

Figure 6:The model animal shapes and their skeletons 
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Figure 5: The input animal shapes and their skeletons 
 

Table 2: Similarities between input and model shapes 
 



  (a) Model 

because their skeleton structures are not the same. This 
is a direct result from the matching algorithm in Step (I) 
of Section 3. This is different from most of the existing 
shape matching algorithms [8][9], which compute the 
shapes’ similarity no matter what. This shows that the 
proposed algorithm provides a flexible choice: it can 
make decision to compute the similarity between two 
shapes or not according to their skeleton structure. If the 
two objects are detected to belong to the same species, 
i.e., they have the same skeleton structure, the similarity 
between them can be computed. Otherwise, the algo-
rithm does not compute the similarity.  

As stated earlier, the skeleton-based graph matching 
problem is solved by a string matching approach, which 
enables the proposed algorithm to handle the structure 
errors by performing string components (skeleton 
edges) deletion and insertion operations. An example 
for a single SE error (missing) is shown in Figure 7, in 
which an input hand shape, Figure 7(b), with the middle 
finger being cut out is matched with a normal hand 
model, Figure 7(a). 
 
 
 
 
 
 
 
 

The fingers can be easily identified in the skeleton 
according to their lengths relative to other normal SEs. 
For this example, there are five possible matches be-
tween the input and the model. In each match a finger, 
called “finger”, is missing in the model shape, we can 
compute the similarity value S(D, Mfinger). Therefore, 
each time only four fingers in the model shape are 
matched with the four fingers in the input shape, the 
computed similarities are S(D, Mthumb)= 4.4962, S(D, 
Mforefinger)=7.2026, S(D, Mmiddle finger)=7.5757, S(D, Mring 

finger)=6.5569, and S(D, Msmall finger)=5.5557. The correct 
match is detected with the largest similarity value when 
the middle finger in the model was not included in the 
matching. The resulting finger correspondences are 
drawn in the Figure 7. Three other examples for the 
input animals that include a single SE error are shown in 
the Table 2, Figure 5(e), (f) and (h). Similarly, multiple 
SE errors can also be handled with our algorithm. The 
ability of the algorithm to handle SE errors is a tradeoff 
between the admissible match and user requirements, 
i.e., the stricter the user requirements, the fewer number 
of the admissible matches. 

 
4.2 Shape recovery  
In this section, two experiments on two MRI knee and 
corpus callosum images are used to illustrate how to 
apply the skeleton-based graph matching algorithm for 
object recovery. To save space, only one sample of MRI 
knee and brain image is shown in Figure 8. The image 
in Figure 8(a) is an example of midline sagittal MRI 
knee images of size 256 by 256. To segment the femoral 

condyle (top portion of the knee), the goal is to 
delineate the top segment of the contour that separates 
the semicircular portion of the femur from the stem. The 
challenge is that there is a blurred edge segment along 
the middle top boundary, while the left and right sides 
of the femoral condyle are rather darker than the middle 
region. This prevents the deformable contour to reach 
the real boundary on the two sides before it flows out 
from the top.  

The landmarks on the contours can be detected using 
the approach stated in Step (IV) of Section 3. These 
landmarks are then used to determine the contour 
segment correspondences. For each contour segment 
that has a large error compared to the corresponding 
model contour segment, the correction process is 
applied and is the same as our previous work [6]. 

    

 
 
In the first experiment, two input knee shapes, 

Figure 9(b), (c), obtained by the DCM method [3] are 
used to match the knee model, Figure 9(a). The knee 
model contour was obtained as described in the step 
(IV) of Section 3, from a set of eight sample images. 
The skeletons of the knees after noise removal are 
shown in Figure 10. In the experiment, the E-nodes of 
the SEs correspond to the corner points on the original 
shape, which are used as the landmarks dividing the 
whole contour into three contour segments. For 
example, the a, b, and c E-nodes on the model skeleton,  
Figure 10, correspond to A, B and C landmarks on the 
model shape, Figure 9. Thus the contour landmark and 
then the segment correspondences are constructed 
following the SE E-nodes correspondences. 

The contour segment error computation and final 
local contour segment correction procedure for the 
segments with large errors are obtained as stated in Step 
(IV) of Section 3. For the first input contour, in Figure 
9(b), two large error segments of BC and CA, which 
may indicate the segmentation difficulties mentioned 
earlier, have to be further refined. The constructed final 
result is shown in Figure 11(a) with both segments BC 
and CA being corrected and shown as segment B’C’ 
and C’A’. Similary, the two large error segments of AB 
and CA in Figure 9(c) are corrected and shown as 
segment A’B’ and C’A’ in Figure 11(b). The contour 
segments errors before and after segments correction are 
listed in Table 3. We can see the final shapes have less 
segment errors than those before correction. 
 
 

Figure 8: One sample of the original 
MRI knee and brain image 

(a) Knee 1 (b) Brain 1 

Figure 7: An example of SE missing matching 
 

 

(b) Input 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

       
 
 
 

 
 
The image in Figure 8(b) is an example of midline 

sagittal MRI brain images of size 512 by 512. The 
objective in this experiment is to segment the corpus 
callosum. The challenge is to extract the contour 
segments with gaps at the lower left and upper right 
corners.  

The two input corpus callosum shapes (Figure 12(b), 
(c)) obtained by the DCM [3] are used to match with the 
corpus callosum model, Figure 12(a). The model is 
derived from a set of six brain sample images as 
described in the step (IV) of Section 3. Their skeletons 
after noise removal are shown in Figure 13. The 
landmarks are determined from the skeleton E-nodes 
and the skeleton matching algorithm is applied to 
construct the correspondence, as shown in Figure 12 (A-
A, B-B). Compared with the corresponding model 

contour segments, the contour segments AB (top 
segments) in both input contours have large error. The 
contour segment correction approach is then applied to 
fine tuning the result. The final contours are shown in 
Figure 14. The contour segment errors before and after 
segment corrections are listed in Table 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 
 

 

5 Conclusion 

In this paper, a robust and efficient skeleton-based 
shape matching method is presented to solve the object 
recognition and recovery problems in challenging and 
difficult conditions of image understanding. In the pro-
posed method, a skeleton-based shape matching method 
uses a combination of both structural and statistical 
methods that are applied in a sequential manner. The 

Before Correction  
(Figure 9(b)) 

After Correction 
(Figure 11(a)) 

Distance  
Errors 

Segment 
points # 

Distance  
Errors 

Segment 
points # 

0.624 42 (AB) 0.333 39 (A’B’) 
4.217 40 (BC) 1.629 32 (B’C’) 
2.458 48 (CA) 1.109 52 (C’A’) 
Before Correction  
(Figure 9(c)) 

After Correction 
(Figure 11(b)) 

Distance  
Errors 

Segment 
points # 

Distance  
Errors 

Segment 
points # 

2.435 43 (AB) 1.18 39 (A’B’) 
1.483 31 (BC) 1.073 31 (B’C’) 
2.115 45 (CA) 1.267 47 (C’A’) 

Before Correction  
(Figure 12(b)) 

After Correction 
(Figure 14(a)) 

Dist.  
Errors 

Number of 
Segment points 

Dist. 
Errors 

Number of 
Segment points 

20.689 319 (AB) (Top) 15.743 275 (A’B’) (Top) 
6.292 163 (BA) (Bot.) 6.292 163 (B’A’) (Bot.) 
Before Correction  
(Figure 12(c)) 

After Correction 
(Figure 14(b)) 

Dist.  
Errors 

Number of 
Segment points 

Dist.  
Errors 

Number of 
Segment points 

10.332 342 (AB) (Top) 1.793 265 (A’B’) (Top) 
1.006 157 (BA) (Bot.) 1.006 157 (B’A’) (Bot.) 

 

A 

B 
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(b) Knee 1 result  (a) Model (c) Knee 2 result  

Figure 10: The knee skeletons of the knee model 
and shapes in Figure 9 after noise removing 
 

Figure 11: The resulting knee contour after 
contour segments corrections  

(a) Knee 1 final result  (b) Knee 2 final result 

 

  

A B 

(b) Brain 1 result of a 
DCM 

(c) Brain 2 result of a 
DCM 

(a) Corpus 
callosum 
model 

   (b) Brain 1 corpus 
callosum skeleton  

(c) Brain 2 corpus 
callosum skeleton  

(a) Corpus callosum 
model skeleton  

Figure 13: The corpus callosum  skeletons after 
removing noise curve segments  

(a) Brain 1 final result  (b) Brain 2 final result 
Figure 14: The resulting corpus callosum contour 
after contour segments correction  

Table 4: The contour segments errors comparison 

   

a  a  a  c  c 
c  

b  b  
(a) Knee model 
skeleton  

(b) Knee 1 
skeleton  

(c) Knee 2 
skeleton  

b  

Table 3: The contour segments errors comparison 

A A 
A 

B B 
B 

Figure 12 The corpus callosum  model and input 
shapes obtained by a DCM [3] 

Figure 9 The knee model and input shapes 
obtained by a DCM [3] 



shape of the input and the models are first represented 
as an ordered tree and strings of the shape primitives, 
i.e. skeleton edges. The matching algorithm computes 
the similarity between the input and the models for all 
possible string matches. The connectivity relationship 
among skeleton edges and the geometrical features of 
the skeleton edges are used for skeleton matching and 
structural classification. To resolve multiple matches 
with the same structures, statistical methods are used to 
select the best match. This sequential approach can 
largely reduce the matching space and thereby lower the 
number of computations when compared with other 
previous works. 

Different from many other model-based segmenta-
tion methods, the shape recovery by using the skeleton-
based shape matching approach presented in this paper 
is invariant to object translation, rotation and scaling. 
Thus, the initial condition requirements and the search-
ing space for shape recovery are reduced significantly. 
Also, by using shape information to guide the segmenta-
tion, the object recovery capability provides improve-
ments in robustness and accuracy of the segmentation 
results as shown in the experiments. The experiments 
with the animal shape silhouette matching and recogni-
tion and the MRI knee and brain shape recovery demon-
strate the capability and potential of this new approach. 
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