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Abstract Although Shape from Motion problem is
formulated as nonlinear least squares problem, it is
generally difficult to solve without restrictions on the
scene or the motion. If the rotation information of
the cameras are known, estimation of the scene struc-
ture and the camera translation is linearized. The
effectiveness of the method is shown with the real
image sequence with the angle information.
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1 Introduction

One of the main problem of Computer Vision is to
recover 3D shape information from 2D image infor-
mation. The problem of recovering the 3D shape
and the camera positions from the multiple images
is called Shape from Motion (SfM) problem. The in-
put of the problem is 2D coordinates of each feature
points in every image, and the output is their 3D po-
sitions and camera positions of each image. As the
2D coordinates of each feature point is a projection of
the 3D position into each image plane, the problem
becomes inverse problem of the projection, and as
the 2D projection of 3D feature point is formulated
as a nonlinear equation, the problem is formulated
as a nonlinear optimization[1].

Difficulty of the problem vastly changes accord-
ing to the property of the input image set. In the
previous works, there are implicit or explicit restric-
tions to the image set such as, distance between the
object and the camera is relatively large[2], entire
object is captured in the every image[2, 1], or the
camera translation or rotation is relatively small[3].

However when we think of recovering a large ob-
ject such as a building, we can not always satisfy
these restrictions. Especially when we think of re-
covering the entire shape of them, satisfying these
restrictions become very difficult in urban situations.
One way of coping with this problem is to incorpo-
rate non-image information.

In this paper, we incorporate the angle informa-

tion of each camera for recovering 3D shape of a large
object from the multiple images. These angle infor-
mation is obtained with a angle sensor or a tripod
with certain angle measure. With the angle infor-
mation, we can recover 3D shape by linear calcula-
tion without any approximation. This method has
advantage that it has no restrictions to the image
properties.

2 Shape from Motion

Shape and motion problem is described by the fol-
lowing variables. Note that the camera focal length
l is known and constant.

• Shape sp = (xp, yp, zp)T , 1 ≤ p ≤ P

We have P feature points in the scene, and the
3D coordinates of the pth feature point on the
object coordinate system XY Z is described as
above.

• Rotation matrix Rf , 1 ≤ f ≤ F

Rotation matrix Rf expresses the fth frame ro-
tation of the object coordinate system viewed
from the camera coordinate system.

• Translation vector tf = (tfx, tfy, tfz), 1 ≤ f ≤
F

Translation vector tf expresses the fth frame
translation of the object coordinate system
viewed from the camera coordinate system.

With above notations, 3D coordinates of the pth
feature point viewed from the camera coordinate sys-
tem of the fth frame become as follows.

sfp = Rfsp + tf .

When the p th feature point at the f th frame
sfp is projected to the image, 2D coordinate ufp =
(ufp, vfp)T becomes as follows,

ufp = P(sfp) = P(Rfsp + tf ) (1)



where P represents the perspective projection oper-
ator defined as follows.
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In the SfM problem, the coordinates of the p th
feature point in the f th frame is given as ũfp. The
problem is summarized as finding the object shape sp

and the camera rotation and translation Rf , tf which
best fit the above feature point coordinates ũfp. In
the most simple form, the problem is formulated as
the nonlinear optimization of following formula.

arg min
Rf ,tf ,sp

∑
(f,p)

|P(Rfsp + tf ) − ũfp|2 (2)

In the case that every feature points are viewed
in every image, this optimization becomes relatively
easy problem, however, in the case that only small
number of feature points are viewed in each image,
it becomes highly difficult, which means that many
local minima occurs in the optimization process. In
most previous methods of SfM, some sort of restric-
tions are assumed implicitly or explicitly[4, 3, 5, 6].

3 Incorporating Angle Infor-
mation

In the case that the only small number of feature
points are viewed in each image, we can think of in-
corporating non-image information to recover shape
and motion. Here we think of incorporating angle
information.

3.1 Formulation
Incorporating angle information means, the rotation
matrices Rf corresponding to the images are known.
It is known that by incorporating such information,
SfM problem becomes linear[7]. Here, we consider a
function of eq.(2) multiplied by the following projec-
tive depth λfp.

λfp = RT
f2sp + tfz (3)

where, Rf2 corresponds to the third row of the ma-
trix Rf . By incorporating Rf information, the eval-
uation function becomes linear as shown below.

∑
(f,p)

λ2
fp|P(Rfsp + tf ) − ũfp|2

=
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F ]T , the problem is
written as follows.

argmin
x

xT Ax

Here, matrix A becomes block diagonal matrix as
follows.

A =




S1 U11 · · · U1F
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Each element of A becomes as follows.

Sp =
∑

f

RT
f PfpRf (5)

Ufp = RT
f Pfp (6)

Tf =
∑

p

Pfp (7)

where Pfp is as follows.

Pfp =


 1 0 −ufp

0 1 −vfp

−ufp −vfp u2
fp + v2

fp




It is well known that the eigenvector of A which
corresponds to the smallest eigenvalue gives optimal
solution of x.

4 Calculation method

As we need only one eigenvector corresponding to
the smallest eigenvalue as the solution, it is efficient
to use the inverse power method to achieve it. This
inverse power method gives fastest computation time
compared to the other methods such as the Jacobi
Transform method. Using the random vector x0 as
the initial value, we can obtain the eigenvector by
performing the following iteration for 5 or 6 times.

xk+1 = A−1xk

5 Experimental Results
5.1 Simulation Results
We first employed simulation experiments to show
the effectiveness of our method. Three real image
sequences are used for the experiment. The size of
each image is 1024 × 768 pixels, and the focal length
is 1037 in pixels. The coordinates of each feature



Table 1: Characteristics of three image sequences
for the simulation experiments. N is the number of
images, P is the number of feature points, and r is
the average number of images each feature point ap-
pears.

seq.1 seq.2 seq.3
N 198 29 144
P 300 124 239
r 10.0 5.4 11.0

range mid range mid range close range

Figure 1: Images of the gym. 4 out of 198 images
are shown.

points are tracked manually and the angle informa-
tion of the cameras are obtained by the manual op-
timization of eq.(2). In the experiment, the random
gaussian error whose average is 0 and standard devi-
ation is σ degree is added to the horizontal and ver-
tical angle and the rotation around the optical axis
information. We used 2.0 and 5.0 for the σ which
were the typical values for the angle sensors and the
mechanical measurement systems.

The charactersitics of each image sequence is
shown in Tab.1. The sequence 1 is an large data
set with the average frames for each feature point
appears is about 10. In the sequence 2, this num-
ber decreases to 5.4 which makes the optimization
difficult. The sequence 3 has near average frames
for each feature point appear, however, the images
are taken very close to the building which make the
problem very difficult.
5.1.1 Experiment on sequence 1
Fig.1 shows four images out of 198 frames of sequence
1. Number of feature point was 300 and average
number of images each feature point appears was
about 10. Fig.2 is top view of true shape where rect-
angular shape in the center corresponds to the shape
of the building and surrounding points correspond to

Figure 2: True shape.

Figure 3: Estimated shape with σ = 2.

Figure 4: Estimated shape with σ = 5.



the camera positions.
Fig.3 shows sum of 20 experimental results of the

top views of recovered shape with different angle er-
ror of standard deviation σ = 2 degree added. Fig.4
shows result of σ = 5 error added. Note that the
recovering shape has distortions in vertical direction
also. In the case of σ = 2, the recoverd shape has
small distortions while it becomes slightly large in
the case of σ = 5. In this case, both results can be
used as an input for the bundle adjustment.

5.1.2 Experiment on sequence 2

Fig.5 shows four images out of 29 in sequence 2. The
number of feature point is 124 and the average num-
ber of images each feature point appears was about
5.4. Fig.6 shows the top view of the true shape.

Fig.7 shows the recovered images with σ = 2. As
there exist feature points which only appears in the
two images, these points are recovered with large er-
rors. As the the average number of images each fea-
ture point appears is small compared to sequence 1,
the SfM problem is difficult compared to sequence 1.
However, except for above outliers, recovered shape
shows good estimation which shows effectiveness of
using angle information together with image infor-
mation.

Fig.8 shows recovered image with error of σ = 5.
Although the shape is largely distorted, it is still use-
full for initial values for bundle adjustment because
it has no topological error such as in Fig.9 which
were obtained by the direct optimization of equation
(2). This kind of topological errors are fatal for the
initial values of the bundle adjustment.

5.1.3 Experiment on sequence 3

Fig.10 shows four images out of 144 in sequence 3.
The number of feature points is 239 and the average
number of images each feature point appears was
about 11. Note that, in this sequence, some images
are taken very close to the building so the captured
area in some images are very small part of entire
building.

Fig.11 shows recovered image with σ = 2. As
in the result of previous experiment, this result also
shows no topological error. However, the position
errors are slightly large. This is because the result-
ing position error becomes relatively large with close
range images. This leads to the point that the far
distance images are prefereable for the SfM problem,
however, the near distance images are still sufficient
for obtaining the initial values for the bundle adjust-
ment.

Fig.12 shows recovered image with σ = 5. The
shape is largely distorted, however, it is still usefull
for initial values for the bundle adjustment.

Figure 5: Images of the Atomic Bomb Dome. 4 out
of 29 images are shown.

Figure 6: True shape.

Figure 7: Estimated shape with σ = 2.



Figure 8: Estimated shape with σ = 5.

Figure 9: Failed estimation in nonliner method.

Figure 10: Images of the Stadium. 4 images out of
144 ones are shown.

Figure 11: Estimated shape with σ = 2.

Figure 12: Estimated shape with σ = 5.

Figure 13: Images of the goal post. Angle informa-
tion is obtained with the angle sensor simultaneously.
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Figure 14: Resulting front, top, side views of the
goal post with proposed method(left) and 8-point
algorithm(right).

5.2 Experiment on Real Data

We next conducted the experiments on the real im-
age and the angle data. To obtain angle informa-
tion, we used 3 DOF angle sensor (MicroStrain Corp.
3DM–G) attached to the camera. Fig.13 shows all
the images used for recovery. The size of the image
and the focal length is same with the simulation ex-
periments. The number of feature point is 88 each
of which are tracked manually.

To compare with results without angle informa-
tion, we applied 8 point algorithm[8] both with pro-
posed method. Resulting front, top, side views are
shown in Fig.14. As the feature points are selected
along the straight lines, the recovered feature points
should lie on the straight lines. In the top view and
the side view of the recovered shape with proposed
method, there exist position errors with the feature
points, however, the error is very small that they can
be improved with the bundle adjustment. On the
other hand, resulting position of some feature points
with the 8-point algorithm has large error which is
difficult to improve with bundle adjustment. This
shows the effectiveness of using angle information in
the shape from motion problem.

6 Conclusions

The shape from motion problem is a difficult problem
which cannot be solved in fast and stable algorithm
generally. To cope with this problem, we proposed
to incorporate the camera angle information. With
this information, we can solve the problem only with
linear algebra that leads to the fast and stable calcu-
lation. We also evaluated the effect of error of angle
information where we could successfully obtain good
results with error of 2 degrees.
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