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Abstract Mutual information (MI) is currently
the most popular match metric in handling the regis-
tration problem for multi modality images. However,
interpolation artifacts impose deteriorating effects
to the accuracy and robustness of MI-based meth-
ods. This paper analyzes the generation mechanism
of the artifacts inherent in partial volume interpola-
tion (PVI) and shows that the mutual information
resulted from PVI is a convex function within each
voxel grid. A new joint entropy estimation scheme
using prior information is proposed to reduce the ar-
tifact effects and we demonstrate the improvements
via experiments on misalignments between MR brain
scans obtained using different image acquisition pro-
tocols.
Keywords: Image Registration, Mutual Informa-
tion, Artifacts Reduction

1 Introduction

Image registration is one of the most widely encoun-
tered problems in a variety of fields including but
not limited to medical image analysis, remote sens-
ing, satellite imaging, optical imaging etc. Broadly
speaking, image registration methods can be classi-
fied into two classes [18], namely feature-based and
direct methods.

1.1 Feature-Based Methods

Feature-based methods typically involve extracting
features such as surfaces, ridges, landmark points
etc., and then using a match metric to find a match-
ing between them under a class of parameterized or
more generally non-parameterized transformations.

In [6], Evans et al. developed a registration
scheme based on approximating the 3D warp be-
tween the model and target image by a thin plate
spline fitted to landmarks. Feldmar et al. [7] devel-

oped a novel surface to surface nonrigid registration
scheme, using a local affine transformation. Maintz
et al. [12] compared edge and ridge-based registra-
tion of CT and MR brain images. For more on
feature-based methods, we refer the reader to the
survey by Maintz et al. [13].

1.2 Direct Methods

Direct methods subsume the approaches operating
directly on the image grey values, without prior fea-
ture extraction.

One straightforward intensity value based ap-
proach is the locally adaptive correlation window
scheme [14]. A more general scheme than window-
based correlation approach is the optical flow formu-
lation, in which the problem of registering two im-
ages is treated as equivalent to computing the flow
between the data sets. There are numerous tech-
niques for computing the optical flow from a pair of
images [8, 1, 5, 9] and we refer the reader to the
survey by Barron et al. [1].

1.3 Image Similarity Measures

Another class of intensity value based approaches is
based on statistical similarity measures.

Variance of Intensity Ratio is the first and sim-
plest statistical measure proposed by Woods et al.
[21] for registering PET and MRI images. Leventon
et al. [10] proposed a method based on matching the
Joint Intensity Distribution of current input image
with the prior joint intensity distribution obtained
from training data sets. Two methods are used to
model the joint intensity distribution of the training
data, mixture of Gaussians and Parzen windowing.

Currently the most popular approach is based on
the concept of maximizing mutual information re-
ported in Viola and Wells [19] and Wells et al. [20],
Collignon et al. [3] and Studholme et al. [16]. For



two images, mutual information is a measure of how
well one image explains the other, or vice versa. Al-
though MI methods are regarded as the best choice
for the multimodal image registration problem, a
number of studies have pointed out that the robust-
ness and accuracy of MI metric is deteriorated by the
interpolation artifact effects. Several methods have
proposed to address this problem [3, 15, 17, 11].

This paper is a further investigation of the ar-
tifacts problem. The generation mechanism of the
artifact associated with the partial volume interpola-
tor, which is regarded as the best choice among all
possible interpolators, is analyzed and correspond-
ingly, a new joint entropy estimation scheme using
prior information is proposed to reduce the artifact
effects. Experiment results using MR T1/T2 images
are provided to demonstrate the improvements.

2 Mutual Information Metric
and Artifact Effects

2.1 Mutual Information

Consider two images Ir(x, y) and If (x, y). We des-
ignate Ir as the reference image and If as the float-
ing image. Registration is to find the coordinate
transformation, denoted as T , such that transformed
floating image If (T (x, y)) is aligned with the refer-
ence Ir(x, y). The alignment is usually obtained by
optimizing a certain similarity metric. So normally a
registration algorithm consists of three components
[1]: a coordinate transform, a similarity criteria, and
a numerical scheme to seek the optimum.

Mutual information is currently the most popu-
lar matching metric being used in handling the reg-
istration problem for multimodal images. The MI
between two discrete random variables, A and B, is
defined as [4]:

MI(A,B) =
∑

a,b

pAB(a, b) log
pAB(a, b)

pA(a).pB(b)
(1)

where pA(a), pB(b) and pAB(a, b) are the marginal
probability distributions and joint probability distri-
bution, respectively. The relationship between MI
and entropy is:

MI(A,B) = H(A) + H(B)−H(A,B) (2)

with H(A) and H(B) being the entropy of A and B,
and H(A,B) their joint entropy.

H(A) = −∑
a pA(a) log pA(a)

H(A, B) = −∑
a,b pAB(a, b) log pAB(a, b)

(3)

Given a set of samples, there are several approaches
to estimate the probability functions pAB(a, b), most
notably the histogram-based method [3] and Parzen
window method [19, 20]. In this paper, we focus on
histogram-based method because it’s widely used in
image registration. To register the images the mu-
tual information is to be maximized.

The advances of mutual information based meth-
ods reside not only in the impressive accuracy in the
reported registration experiments, but also the gen-
erality the MI methods can provide. Very few as-
sumptions ever made regarding the relationship that
exists between the image intensities, so mutual infor-
mation is especially suited for multi-modality match-
ing and that it is completely automatic.

Studholme et al. [16] pointed out the standard
mutual information is sensitive to the field of view
of the scanner used in the image acquisition, namely,
with different choices of field of view, the maximiza-
tion process may lead to an incorrect alignment. The
authors then extended the mutual information to
a normalized mutual information to alleviate this
problem:

NMI(A, B) = (H(A) + H(B))/H(A, B) (4)

2.2 Interpolation Artifact Effects

For digital images Ir(x, y) and If (x, y) to be aligned,
interpolation is necessary to evaluate the values of
MI(Ir(x, y), If (T (x, y)). A number of interpola-
tors are available, including nearest neighbor (NN),
linear, cubic spline, Hamanning-windowed sinc and
partial volume (PV) interpolators. Among them, PV
is regarded as the best choice for MI-based metrics,
as pointed out by several studies [17, 12].

Partial volume interpolation is not an interpola-
tion in the ordinary sense. It is a strategy being used
to update the joint histogram. As shown in Figure 1,
instead of interpolating the new intensity value un-
der current transformation T , PV directly updates
the histogram of the nearest neighbor bins with the
same weights used in bilinear (for 2D) or trilinear
(for 3D) interpolation.

In [15], Maintz et al. qualitatively explained the
reason why artifacts are generated in partial volume
interpolation process and verified their arguments
through several well-designed experiments. While
their work is very informative, we believe that a the-
oretically quantitative analysis concerning the gener-
ation mechanism of artifacts will be more instructive
to guide the related research.

As interpolation affects the registration function
of normalized MI and traditional MI in a similar way
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Figure 1: PV interpolation.

[15], we will construct our arguments based on tradi-
tional MI in this paper, but it should be noted that
the conclusions also hold for normalized MI.

As given above, the mutual information
MI(A, T (B)) consists of 3 terms: H(A), H(B)
and H(A, T (B)). H(A) is a constant. The
computation of H(T (B)) is also affected by the
interpolation effect, but in a much smaller extent.
Figure 2 shows a pair of aligned MR/CT images
and the associated marginal entropies, joint entropy
and MI values as functions of translations up to
±7 pixel distances. As evident, the variation of MI
is dominated by the changes in H(A, T (B)); H(A)
and H(T (B)) are close to constants. So from now
on, we will focus only on H(A, T (B)).

Let’s first consider the situation where the refer-
ence and floating images have exactly the same pixel
sizes and the motion is limited to translations only.
We use the CT image in Figure 2 as the reference,
while MR is the floating image. Now let’s analyze
the variation of MI function between the two images
when the floating image moves from the alignment
position to 1 pixel away along x axis.

Suppose at the alignment position (translation is
equal to zero), a certain histogram bin his(a, b) has
a value of M1. his(a, b) records the total number
of pixels in the image pair where the reference im-
age has intensity a, and floating image b. Suppose
when the translation is 1 pixel, his(a, b) becomes
M2. Let’s re-define the his(a, b) to his(a, b, t) to in-
clude the translation variable, then his(a, b, 0) = M1

and his(a, b, 1) = M2. In between, with the trans-
lation being t, there are a group of intensity grids
X1 = {(x1, y1), (x2, y2)...} that were originally con-
tributing to the bin his(a, b), gradually wipe out
their support when the floating image is moving.
Let’s call this group of grids as the moving-out set,
and let A1 be the total number of these grids. Be-
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Figure 2: The mutual information value of a pair
of multimodal images. Row 1 contains a pair of
MR/CT images. Row 2 and row 3 shows the mu-
tual information(MI),marginal entropies (H(A) and
H(T (B))) and joint entropy ((HA, T (B))) values as
functions of translations t (up to ±7 pixels).

cause the motion here is limited to translation only,
all the grids in the moving-out set are withdrawing
their contributions to the bin his(a, b) at the same
rate, as the translation increases from 0 to 1. When
the translation is 0, each of them contribute an ′1′

to his(a, b); when the offset is 1, they do not have
contribution any more. In between, the contribution
of the each moving-out grid is 1− t.

Similarly, there might be another group of grids
X2 (let A2 be the total number) that were not orig-
inally contributing to his(a, b), start moving in to
contribute to his(a, b) as the translation increases
from 0 to 1. Their individual contribution to his(a, b)
is ′t′ at translation t.

Overall, the combined effects of the moving-in
and moving-out sets lead to the change of his(a, b).
So we have:

A2 −A1 = M2 −M1; (5)

At translation t:

his(a, b, t) = M1 + A2 t−A1 t
= M1 + (M2−M1) t
= t M2 + (1− t) M1

(6)

So basically within interval [0, 1], the bin value
his(a, b, t) is a linear function of the offset variable t,



denoted here by f(t):

f(0) = M1, f(1) = M2
f(t) = t f(1) + (1− t) f(0). (7)

Since we use histogram to approximate distribu-
tion, the joint entropy of two images can be rewritten
as H(A, T (B)) = −∑

a,b his(a, b, t) log his(a, b, t).
As we know, the function x log x, denoted by g(x)
here, is a convex function within the interval (0, 1]
(note its second derivative is positive), i.e.:

g(t x1 + (1− t) x2) ≤ t g(x1) + (1− t) g(x2)

Therefore, the individual contribution of the bin
his(a, b, t) to the joint entropy H(A, T (B)) follows:

g(f(t)) = g((1− t) f(0) + t f(1))
≤ (1− t) g(f(0)) + t g(f(1)) (8)

The inequality above indicates that each
component of H(A, T (B)) is a convex func-
tion within [0, 1]. Since the summation of
convex functions is still a convex function,
H(A,T(B)) = −∑∑

g(his(a,b, t)), as a nega-
tive combination of certain number of convex
functions, is a concave function in [0, 1]. Cor-
respondingly, the MI responses is a convex
function in the same interval. This property can
be easily extended the any intervals [n, n + 1] where
n is an integer. That’s the reason the responses of
H(A, T (B)) as a function of translation t (Figure 2)
bears a concave-shaped artifact within each integer
interval.

If we take a closer look at the above analysis,
we can find that the heart of the artifact generation
mechanism lies in the following fact: all the moving-
in and moving-out grids contribute to the change of
the bin value at a synchronized pace. As a conse-
quence, a general guideline to reduce the artifact ef-
fects can be “to break the synchronization”.

In addition, the following prediction can be made
based on the above analysis:

• The artifact effect for pure rotations would be
less severe than that of pure translations. This
is because the moving-in and moving-out grids,
under the pure rotation motion scenario, do not
contribute to the change of histogram in a uni-
formly rate. Figure 3.a. shows the H(A, T (B))
values as a function for rotations (up to ±15◦).
As evident, the responses for rotations are much
smoother than the translation counterpart.
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Figure 3: Row 1 contains a pair of MR/CT images.
Row 2 shows the mutual information (MI) value as
a function to rotaions (±20◦).

2.3 Artifacts Reduction

Based on the abolve analysis, we propose the an ar-
tifact effects reduction scheme based on integrating
prior information. The idea is to wipe out the con-
cave function portion of the joint entropy, with the
linear function part kept. This task can be mostly
done by combining the joint entropy H(A, T (B))
with a prior joint entropy H∗(A, T (B)). The jus-
tification is based on the assumption that the train-
ing data would provide a prior joint probability that
is similar to the probability of the test data, there-
fore the artifact part can be effectively removed by
subtracting the concave function part of the prior
joint entropy. To achieve this end, we replace the
MI metric with a modified version: M̄I(A, T (B)) =
H(A) + H(T (B))− (H̄(A, T (B))

Suppose T is a 2D rigid transform vector
{α, dx, dy}, let

T00 = {α, floor(dx), f loor(dy)}
T01 = {α, floor(dx), ceil(dy)}
T10 = {α, ceil(dx), f loor(dy)}
T11 = {α, ceil(dx), ceil(dy)},

where floor and ceil stand for floor and ceiling
operations respectively. The modified joint entropy
H̄(A, T (B)) is defined as follows:

H̄(A, T (B)) = H(A, T (B))−H∗(A, T (B))
+ BiLinear(H∗(A, T00(B)),H∗(A, T01(B)),

H∗(A, T10(B)),H∗(A, T11(B))),
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Figure 4: Top left: The MI artifact patterns for
the CT/MR image pair. Top right: The prior con-
cave function to be subtracted. Bottom left: M̄I
responses after substracting the prior concave func-
tion.

where BiLinear is the bilinear interpolation opera-
tion.

Figure 4 depicts the registration for the new MI
function. The top left subfigure of Figure 4 shows the
MI artifact patterns for the CT/MR test image. The
top right shows the concave function that is obtained
from a pair of registered training images. As evident
in the bottom subfigure, a significant reduction of
interpolation artifacts was achieved after subtracting
the concave function.

3 Experiment Results

In this section, we demonstrate the robustness prop-
erty of the new MI computation method proposed
in the previous section. All the examples contain
synthesized miss-alignments applied to MR data sets
from the brainweb site at the Montreal Neurological
Institute [2].

The experiments are designed as follows: with a
2D MR T1 slice as the reference image, the floating
image is obtained by applying a rigid transformation
to a previously aligned 2D MR T2 image.

With 15 randomly generated rigid transforma-
tions, we applied our Integrating Prior Joint En-
tropy algorithms together with the traditional MI
method to estimate motion parameters. These trans-
formations are normally distributed around the val-

ues of (0◦, 10pixel, 10pixel), with standard devia-
tions of (5◦, 3pixel 3pixel) for rotation and trans-
lation in x and y respectively.

Table 1 depicts the mean and standard deviation
of the estimation errors obtained from the 2 meth-
ods. In each cell, the leftmost value is the rotation
angle (in degrees), while the right two values show
the translations in x and y directions respectively.
Out of the 15 trials, the traditional MI failed 5 times
while the Integrating Prior Joint Entropy never
failed (“failed” here means that the results had un-
acceptably large errors). If we only count the cases
which gave reasonable results, as shown in the first
(for Integrating Prior Joint Entropy) and third
(for traditional MI) rows, our approach and the tra-
ditional MI have comparable performances, all being
very accurate. Note that Powells method was used
as the optimization scheme in these experiments.

mean standard deviation

1 0.132◦ 0.293 0.372 0.012◦ 0.112 0.230

2 0.087◦ 0.293 0.383 0.031◦ 0.121 0.129

Table 1: Comparison of estimation errors for rigid
motion between Integrating Prior Joint Entropy and
traditional MI.

4 Conclusions

In this paper, we quantitatively analyzed the genera-
tion mechanism of the interpolation artifacts. A new
joint entropy estimation scheme using prior informa-
tion is proposed to reduce the artifact effects. Com-
parisons were made between the traditional MI and
the new method. Experimental results depicted bet-
ter performance of using the modified method over
the traditional MI.
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