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Abstract  
 

The fuzzy C-means algorithm is an unsupervised 
classification algorithm. This algorithm suffers from some 
difficulties, the number of classes must be known a priori, 
the initialization phase and the local optimums. We present 
in this paper some improvements to this algorithm based 
on the evolutionary strategies and the entropy approach in 
order to get around these three difficulties. We have 
designed a new evolutionist fuzzy C-means algorithm. We 
have suggested a new mutation operator which allows the 
algorithm to avoid local solutions and to converge towards 
the global solution in a small amount of computation time. 
We have proposed a new criterion for an optimal choice of 
the number of classes. This criterion uses in its derivation 
the entropy approach. The proposed method is validated 
on several simulation examples. The experimental results 
obtained show the rapid convergence and the good 
performances of this new approach. 
 
 
1  Introduction 
 
Classification consists of partitioning a set of objects into 
groups or classes in such a way that all objects  belonging 
to one same class are all resembling between them and 
different from objects of other classes. This approach 
requires both a technique for measuring the resemblance 
between objects and the choice of an adequate criterion 
which measures the quality of the obtained grouping of 
objects. The classification problem becomes then a 
problem of a criterion optimization [1]. The algorithm of 
fuzzy C-means (FCM) is an unsupervised classification 
algorithm based on this approach [2] [3] [4], it is widely 
used for classification problems. Unlike other classification 
methods, the FCM algorithm uses the fuzzy logic to 
determine the best possible partition, the choice of the 
optimal partition is controlled by a fuzzy function. The 
FCM algorithm gives furthermore the degree of how much 
an object is a membership to its allocated class. 

 
 However the FCM algorithm requires the a priori 
determination of the number of classes [3] and suffers from 
the initialization phase and the local optimums [5] [6] [7] 
[8] :  
 

- This algorithm requires the optimal choice of the 
classes number. This optimal choice guides the 
algorithm to provide a partition with the smallest 
error value possible. 

- This algorithm converges in a finite number of 
iterations but the obtained solution depends on the 
initial values chosen for the algorithm, if indeed, 
we reinitialize the algorithm with a set of other 
values, it will converge to an other local solution 
which is entirely different from the first one. 

 
 We present in this work some improvements to this 
algorithm based on the evolutionary strategies and the 
entropy approach in order to get around these three 
difficulties. We have designed a new evolutionist fuzzy C-
means algorithm (EFCM) which has so many advantages 
over the FCM algorithm. These are viewed in its 
generality, its parallelism and the genetic operations. The 
FCM algorithm deals with one unique solution at each 
iteration, while the proposed EFCM algorithm deals with a 
population of solutions in the same time. These solutions 
are subjected, during the iterations steps, to a Gaussian 
perturbation, which makes it then possible to avoid the 
local solutions. We have proposed a new mutation operator 
in order to be able to control the Gaussian disturbance 
level and to reduce the computation time required to 
converge towards the global solution. We have also 
proposed a new criterion for the optimal choice of the 
classes number based on the entropy approach. 
 

Section 2 introduces the evolutionary strategies. In 
section 3, we give some definitions, and we recall the 
fuzzy C-means algorithm. Section 4 describes our 
evolutionist fuzzy C-means algorithm. In section 5, we 
present the new proposed criterion for an optimal choice of 
the classes number. While in section 6, the performances 
of this new method are evaluated by some experimental 
results. Finally, we give a conclusion. 

 
2 Evolutionary strategies  

 
Evolutionary strategies (ES) are particular methods for 
optimizing functions. These techniques are based on the 
evolution of a population of solutions which under the 
action of some precise rules optimize a given behavior, 
which initially has been formulated by a given specified 
function called fitness function [9]. 
 
 An ES algorithm manipulates a population of constant 
size, formed by candidate points called chromosomes. 
Each chromosome represents the coding of a potential 
solution. It is composed by a set of elements called genes, 
these are reals [3]. 

 



  

 At each iteration (generation) a new population is 
created from its predecessor by applying the genetic 
operators: selection and mutation. The mutation operator 
perturbs with a Gaussian disturbance the chromosomes to 
generate a population optimizing further the fitness 
function. This procedure allows the algorithm to avoid the 
local optimums. While the selection operator constructs the 
next generation made by the pertinent individuals [3][9]. 
 
 Figure 1 illustrates the different operations to be 
performed in a standard ES algorithm [9] [10] :  

 
        Random generation of the initial population  
        Fitness evaluation of each chromosome  
    Repeat 
        Select the parents  
        Update the genes by mutation 
        Select the next generation  
        Fitness evaluation of each chromosome  
    Until  Satisfying the stop criterion 

Figure 1 : Standard SE algorithm. 
 
3 Fuzzy classification  
 
3.1 Descriptive elements  
 
Consider a set of M objects {O1, O2, ..., Oi , ..., OM} 
characterized by N attributes, grouped in a line vector form 
V = (a1 a2 ... aj  ... aN). Let Ri = (aij) 1

�
j

�
N be a line vector of 

RN where aij is the value of the attribute aj for the object Oi. 
Let mat_va be a matrix of M lines ( representing the 
objects Oi) and N columns ( representing the attributes aj), 
defined by : 

� �
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dd
dd 
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1_  

 V is the attribute vector, Ri is the observation 
associated with the object Oi or the realization of the 
attribute vector V for this object, RN is the observations 
space [1] and mat_va is the observation matrix associated 
with V. The ith line of mat_va is the observation Ri. Each Ri 
belongs to a class CLs, s=1, …, C. 
 
 From a geometric point of view, if we represent each 
observation by a point in the observations space RN,  the 
set of observations will then provide a cloud of points in 
this space. 
 
3.2 FCM algorithm 
  
Consider M observations (Ri)1

�
i

�
M to be associated with C 

classes (CLs)1
�

s
�

C of centers (gs)1
�

s
�

C. The centers are line 
vectors of dimension N. Unlike other classification 
methods, the FCM gives the degree of membership of Ri to 
a given class CLs of center gs, denoted Pis, Pis � [0,1]. The 
FCM is based on the minimization of the following 
optimization criterion [2][3][4] : 
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where  . is an Euclidean distance. df is the “fuzzy 

degree” and may vary from 1 to infinity. Often, df is equal 
to 2 [3]. 
 
 The FCM algorithm supposes that the number of 
classes C is known, a priori. After an initialization with a 
random value, the centers and the degrees of membership 

are updated iteratively. Let *isP and *sg  be the new values, 

we have [3][4] : 
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 Figure 2 gives the FCM algorithm flowchart [3] [4] : 
 

      Fix the number of classes C 
      Initialize randomly the centers (gs)1 � s � C 
      Stop  = false 
      While  Stop = false Do 
            Adjust the degrees of membership  
            Adjust the centers   

            If H�� �
sss gg max Then Stop = true  

      End While  
      Attribute each observation Ri to the class CLs with 
      the condition Ri � CLs if Pis=maxPir , 1drdC. 

Figure 2 : Flowchart  of the FCM algorithm. 
 
4 Evolutionary fuzzy classification 
 
4.1 Proposed coding   
 
The FCM algorithm consists of selecting among all of the 
possible partitions the optimal partition by minimizing a 
criterion. This yields the centers (gs)1 � s � C. Thus we suggest 
the real coding as : 

         NjCssjgchr dddd 1,1)(  

    � �CNgCgsNgsgNggNgg ..1....1..2..211..11  

The chr chromosome is a real line vector of dimension 
CuN. The genes (gsj)1 � j � N are the component of the gs 
center : 

Njsjgsg dd 1)(  

                )....21( sNgsjgsgsg  

To avoid that the initial solutions to be far away from 
the optimal solution, each of the chr chromosome of the 
initial population should satisfy the condition : 

] ,max [min 11 MiijMiijsj aag �����  

 In the evolutionist fuzzy C-means algorithm, we must 
discard any chromosome of the initial population having a 



  

gene which does not satisfy this constraint. This gene, if 
any, is replaced by an other one which complies with the 
constraint. 
 
4.2 The proposed fitness function  
 
Let chr be a chromosome of the population formed by the 
centers (gs)1

�
s

�
C, for computing the fitness function value 

associated with chr, we define the fitness function F which 
expresses the behavior to be optimized (J criterion) :  
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The chromosome chr is optimal if F is minimal. 
 
4.3 The proposed mutation operator   
 
The performances of an algorithm based on evolutionary 
strategies are evaluated according to the mutation operator 
used [11]. One of the mutation operator form proposed in 
the literature [7] [12] [13] is given by : 

)1,0(Nchrchr u� �
V  

where chr* is the new chromosome obtained by a Gaussian 
perturbation of the old chromosome chr. N(0,1) is a  
Gaussian disturbance of mean value 0 and standard 
deviation value 1, V is the strategic parameter. V  is high 
when the fitness value of chr is high. When the fitness 
value of chr is low, V must take very low values in order to 
be not far away from the global optimum. 
 
 We have been inspired from this approach to propose a 
new form of the mutation operator. The fact that we have 
proposed a new mutation operator is motivated by our 
interest to reach the global solution in a small 
computational time.  
 
 Let chr be a chromosome of the population formed by 
the centers (gs)1 � s � C. Let CLs={Ri /Pis=maxPir ,1drdC}, i.e. 
the class formed by the observations Ri which have a 
membership degree to this class of center gs higher than 
that if they were to belong to other classes CLr having 
centers gr. Let g°s be the gravity center of CLs (figure 3). 
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Figure 3 : Illustration example in a two dimensional space. 

 
 The mutation operator which we propose in this work 
consists in generating, from the chr, the new chromosome 
chr* formed by the centers (g*s)1 � s � C, as :   

)1,0()( Nggfgg ssmss u�u� � �
 

where fm is a constant in [0.5,1]. The new strategic 
parameter proposed  V’ = fm u ( g°s - gs) is low when gs gets 
closer to g°s and is high when gs is far from g°s. The 
proposed V’ parameter has two advantages : 
 

- When chr is far from the global solution, chr is 
subjected to a strong Gaussian perturbation 
allowing chr to move more quickly in the 
research space and in the same time to avoid local 
solutions. 

- V’ controls the Gaussian perturbation level. 
Indeed, as the chromosome chr gets closer to the 
global solution, the Gaussian perturbation level is 
reduced until becoming null at convergence. 

 
 In order to choose the population parents chromosomes 
which will be mutated in order to generate children 
chromosomes we have adopted the technique of choice by 
ordering. We have also used the elitist technique [14]. 
 
4.4 The proposed EFCM algorithm 
 
Figure 4 shows the different steps of the proposed EFCM 
algorithm. 
 
Stage 1 :  
  
1.1. Fix : 

- The size of the population maxpop. 
- The maximum number of generations maxgen. 
- The fuzzy degree df  (often df  = 2). 
- The constant fm (fm � [0.5 , 1]). 
- The number of classes C. 

1.2. Generate randomly the population P : 
P = {chr1, .., chrk, ..., chrmaxpop} 

 1.3. Verify for each chr of P the constraint : 
gsj�[min aij, max aij], 1didM 

1.4. Attribute for each chr of P, the observations Ri to the 



  

corresponding classes : 
CLs= {Ri /Pis=maxPir ,1drdC} 

1.5. Update the population P, for each chr of P do : 
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1.6. Compute for each chr of P its fitness value F(chr).  
 
Stage 2 : 
 
Repeat   
 
2.1. Order the chromosomes chr in P from the best to the 
poor ( in an increasing order of F). 
2.2. Choose the best chromosomes chr. 
2.3. Attribute for each chr of P, the observations Ri to the 
corresponding classes : 

CLs= {Ri /Pis=maxPir ,1drdC} 
2.4. Mutation of all the chromosomes chr of P except the 
first one (elitist technique) : 

)1,0()( Nggfgg ssmss u�u� � �

 

2.5. Attribute for each chr of P except the first one, the 
observations Ri to the corresponding classes: 

CLs= {Ri /Pis=maxPir ,1drdC} 
2.6. Update the population P, for each chr of P except for 
the first one, do : 
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(The  population P obtained after the updating is the 
population of the next generation ) 
2.7. Compute for each chr of P its fitness value F(chr). 
 
Until Nb_gen (generation number) ! maxgen 

Figure 4 : The proposed EFCM algorithm. 
 
5 Determination of the optimal number of 
classes 
 
Choosing the right number of classes C, In many partition 
problems, is a difficult task. Several criteria for choosing 
the optimal number of classes, based on different 
approaches, have been proposed in the literature [15] [16] 
[17] [18]. 
 
 For a given value of C, the EFCM algorithm obtains at 
convergence the global optimal partition for which the 
value of F is minimal. Let f(C) = minchr F(chr) this value 
(chr is a real line vector of dimension CuN formed by the 
centers (gs)1

�
s

�
C ). The aim is to find a number Copt << M 

which gives rise to an optimal fuzzy classification. This 
ensures a partition with the lowest error value possible.  
 
 In [19], Ruspini interpret Pis (degree of membership of 
the observation Ri to the class CLs) as the probability p(Ri 
�CLs) that Ri belongs to CLs. Similarly, in this paper, we 

interpret Pis as the probability p(Ri �CLs) that Ri belongs to 
CLs. Indeed, we have : 

Pis � [0,1] and ¦
 

C

s is1
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 The a priori probability of each observation is p(Ri) :  
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 Thus the a priori probability of the class CLs is [20]: 
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 A class is represented in the observations space as a 
cloud of points. The position (repartition ) of these  clouds 
in the observations space may be characterized by the 
intra-cloud distances and the entropy. Palubinskas et al. 
[21] have carried out several works on this subject but in 
the non fuzzy case. The first term of their criterion is the 
sum of the intra-cloud distances. The second term is the 
entropy associated with all the clouds present.  
 
 We have been inspired by this approach to define the 
entropy of the clouds of points in the fuzzy case.  We 
define the entropy in our case as : 
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 Thus, to determine the optimal number of classes, we 
propose the criterion :  

)()()( CECfCHEJ �  

 The first term f(C) of the criterion characterizes the 
homogeneity of the clouds of points. This term becomes 
smaller if a particular cloud contains points which are more 
similar between them. 
 
 The second term E(C) is the entropy of the clouds of 
points. This term becomes smaller if all the points which 
are similar to each other belong to the same cloud of points 
and all the other points are outside. 
  
 The EFCM algorithm runs for several values of C, 
C�[Cmin, Cmax] (2dCmin and Cmax <<M). For each  value of 
C, this algorithm obtains at convergence the values of f(C) 
and Pis. Once the values of Pis are obtained, we compute 
E(C) and we determine JHE (C). The optimal number of 
classes Copt is chosen such as : 

)(min arg  )(min)( CHEJCoptCCHEJCoptCHEJ  �  

 
6 Experimental results and evaluations  
 
6.1 Introduction 
 
We have considered three simulation tests in the 
observations space of dimension 2. These tests are 
different from each other by the repartition type of the 
classes in the observations space. In each test, the classes 



  

are generated randomly by Gaussian distributions and each 
class contains 100 observations. 
 
6.2 Test 1  
 
In this test, the number of classes chosen is C=3 and the 
overlapping degree between the classes is null. The classes 
are well separated between them. Table 1 gives the real 
centers of the classes and figure 5 shows the repartition of 
the observations in the observations space. 
 

Class  CL1 CL2 CL3 
Center vector  4   4 6   2 8   4 

Table 1 : Real centers of the classes. 
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Figure 5 : Repartition of the observations in the space. 

  
 The proposed evolutionist algorithm runs quickly. 
Figure 6 shows the evolution of the fitness value of the 
best chromosome of the current population as long as the 
generations progress. The optimal chromosome chropt 
obtained is : 

chropt= (4.0179 3.9522 5.9718 1.9959 7.9442 3.9672) 
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Figure 6 : Fitness evolution. 

 
 We noticed that in very few generations, the EFCM 
algorithm converges to the global optimum and determines 
the class centers. This is due to the parallel nature of the 
evolutionist algorithm and also to the nature of the 
proposed mutation operator which has rapidly guided the 
algorithm, by means of an adapted Gaussian perturbation, 
to the global solution. The local solutions have well been 

avoided. The centers obtained are slightly shifted from the 
real centers. 
 
 The classification results obtained by the proposed 
EFCM algorithm are summarized in figure 7 and table 2. 
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Figure 7 : Optimal classes and centers obtained using EFCM. 

 
 Estimated 

CL1  
Estimated 

CL2 
Estimated 

CL3 
CL1 100 0 0 
CL2 0 100 0 
CL3 0 0 100 

Table 2 : Confusion matrix. 
  
 These results show that all the observations are 
correctly attributed to their corresponding classes, the error 
rate obtained is null. The initialization problem is removed, 
the result obtained is the same for different initializations. 
The proposed mutation operator has permitted to the 
algorithm to avoid local optimums and to converge rapidly 
to the global solution. 
  
6.3 Test 2 
 
In this test, we have considered three other classes, but the 
overlapping degree in this case is high. The classes are 
very close to each other and have the same centers as the 
classes of test 1. Figure 8 shows the repartition of the 
observations in the observations space. We notice that it is 
difficult to find the optimal partition in this case. 
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Figure 8 : Repartition of the observations in the space. 



  

 Figure 9 shows the evolution of the fitness value of the 
best chromosome of the current population with respect to 
the progressing generations. It shows that the proposed 
algorithm converges rapidly to the global solution. The  
rapidity of the algorithm is not sensitive to the overlapping 
degree. The optimal chromosome chropt obtained is : 

chropt= (4.1012 3.9225 5.9447 1.8709 7.9207 3.9308) 
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Figure 9 : Fitness evolution. 

 
 Figure 10 and table 3 summarize the classification 
results obtained by the proposed algorithm. 
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Figure 10 : Optimal classes and centers obtained using EFCM. 

 
 Estimated 

CL1  
Estimated 

CL2 
Estimated 

CL3 
CL1 96 3 1 
CL2 5 87 8 
CL3 6 5 89 

Table 3 : Confusion matrix. 
  
 The number of misclassified observations in this case is 
28. The corresponding error rate is : 

%33.9
300
28   W  

 The error rate has increased with the overlapping 
degree. By analyzing the repartition of the classes, we 
noticed that the misclassified observations are situated : 
 

- Either far away from the space of their 
corresponding classes, for instance the class CL1 
contains 4 observations of class CL2 ( figure 8). 

- Either in the boundaries of separation between the 
classes, for instance the boundary which separates 
the two classes CL2 and CL3 ( figure 8). 

  
 It is then normal that these observations are 
misclassified, this explains the high error rate value 
obtained. 
 
6.4 Test 3 
 
In this test, the aim is to evaluate the performances of the 
EFCM algorithm for a high number of classes, we have 
chosen C = 6. The overlapping degree between the classes 
is high. The real centers of the 6 generated classes are 
shown in table 4. 

 
Class CL1 CL2 CL3 CL4 CL5 CL6 

Center  vector  4  5 4   7 6   3 6   6 8   5 8   7 
Table 4 : Real centers of the classes. 

 
 Figure 11 shows the repartition of the classes in the 
observations space, it shows that it is difficult to find the 
best partition for such a case. The observations of each 
class are indeed not concentrated around their class center. 
It is then possible to find observations of a class CLs which 
are more close to the center of an other class CLs’ than they 
are to their own center (figure 11). These observations are 
generally misclassified.   
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Figure 11 :  Repartition of the observations in the space. 

 
 The proposed EFCM algorithm converges in a small 
number of generations (not more than 6) towards the 
global optimum (figure 12). The optimal chromosome 
chropt obtained in this case is : 

 
chropt = (4.1071 4.8030 3.9031 6.9612 6.0048 2.8858 6.0564 

5.9842 8.1286 4.9510 8.0197 6.9866) 
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Figure 12 : Fitness evolution. 

 
 The classification results obtained by the EFCM 
algorithm are summarized in figure 13 and table 5. 
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Figure 13 : Optimal classes and centers obtained using EFCM. 

 
 Estimated 

CL1  
Estimated 

CL2 
Estimated 

CL3 
Estimated 

CL4 
Estimated 

CL5 
Estimated 

CL6 
CL1 91 7 0 2 0 0 
CL2 5 91 0 4 0 0 
CL3 8 0 92 0 0 0 
CL4 0 0 0 98 0 2 
CL5 0 0 1 5 94 0 
CL6 0 0 0 5 4 91 

Table 5 : Confusion matrix. 
 

 The number of misclassified observations is 43, the 
corresponding error rate is : 

%17.7
600
43   W  

 Whilst the number of classes increases with a high 
overlapping degree between the classes, the error rate 
value obtained remains low. This confirms the good 
performances of the EFCM algorithm presented even when 
the number of classes is high. 
 
6.5 Estimation of the optimal number of classes 
 
We here evaluate the performances of the proposed JHE 
criterion. For this, we have retained the three experimental 
tests previously presented. In each test, the EFCM 
algorithm was run for several values of C, C�[2,6] for 

tests 1 and 2 and C�[2,10] for test 3. Figures 14 to 16 
show the evolution of the JHE function with respect to the 
number of classes C for each test. 
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Figure 14 : Evolution of  JHE with respect to C for test 1, Copt =3. 
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Figure 15 : Evolution of  JHE with respect to C for test 2, Copt =3. 
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Figure 16 : Evolution of  JHE with respect to C for test 3, Copt =6. 

 
 The results obtained, for each case, show that the 
estimated optimal number of classes Copt coincide with the 
real number Creal (i.e. Copt = Creal = 3 for tests 1 and 2, Copt 
= Creal = 6 for test 3). This confirms the good performances 
of the proposed JHE criterion. 
 
 



  

7 Conclusion 
 
The unsupervised classification by the FCM algorithm 
requires the a priori determination of the number of classes 
and suffers from the initialization phase and the local 
optimums. 
 
 We have proposed in this paper a new approach to get 
around these three difficulties. The new approach is based 
on the evolutionary strategies and the entropy approach. 
We have proposed a new evolutionist fuzzy C-means 
algorithm. We have presented a real coding and have 
defined an adequate fitness function suitable for the 
behavior to be optimized. We have proposed a new 
mutation operator which have permitted to the algorithm to 
avoid local solutions and to converge rapidly to the global 
solution. Then, we have defined a new criterion for an 
optimal choice of the classes number. This criterion is 
based on the entropy approach. 
 
 The proposed approach was tested on several 
simulation examples. The experimental results obtained 
show the rapidity of convergence and the good 
performances of the presented classification method. The 
optimal number of the classes estimated by the proposed 
criterion coincide with the real number. The two problems 
of initialization and local optimums are discarded in the 
EFCM algorithm. 
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