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Abstract

This paper presents a multiple camera system to de-
termine the head pose of people in an indoor setting.
Our approach extends current eye tracking techniques
from a single camera system to a multiple camera sys-
tem. The head pose of a person is determined by tri-
angulating multiple facial features that are obtained
in real-time from eye trackers. Our work is unique
in that it allows us to observe user head orientation
in real-time using several cameras over a much larger
space than covered by a single camera. We demon-
strate the viability of this system by experimenting
with several people under different lighting conditions
performing head movements.

Keywords: Computer vision, eye tracking,
multiple camera systems.

1 Introduction

The head pose of a person in a pervasive computing
environment is very important for human computer
interaction. For example, if the general direction of a
user’s gaze is known, appliances can determine that
eye contact has been established or data can be moved
to a display device nearer to the user’s line of sight.
The goal of our work is to estimate user head pose
non-invasively and robustly in real-time. Our sys-
tem uses a scalable number of cameras mounted in a
room to estimate the head pose of users as they move
around in the viewing volume of the cameras. Our
approach uses three IBM Blue Eyes cameras for in-
put [8], and tracks eyes using the method described
by Haro et al. [5]. We extended the underlying ap-
proach proposed in [5] to perform robust real-time
head pose estimation in indoor environments and al-
low for extension to multiple cameras.

The advantage of this system is that it is robust
under decent indoor lighting, is non-invasive and real-
time compared to existing commercial systems. The
robustness of the eye tracking allows us to use eyes
as a very reliable low-level feature to perform higher

level processing and tracking. For example, we use
the location of the eyes to very reliably find mouth
corners in real-time. Such a task would be very hard
and prone to error if only edges or intensity values
were used as the primary features.

Our approach uses the tracked eye locations and
mouth corners as low-level features in estimating head
pose. These four facial features from all cameras are
used to robustly determine the pose of a person by us-
ing a combination of stereo triangulation, an interpo-
lation technique, and an algorithm to switch between
subsets of multiple cameras for better tracking.

We obtained results that show that our system
gives stable estimates of pose and captures fine vari-
ation as a person moves. The results also show the
effectiveness of the switching algorithm in terms of
the temporal continuity of the tracking.

2 Previous Work

Several researchers have used tracked head pose as
part of their research in studying eye movements.
Aaltonen et al. [1] used eye and head pose track-
ing in basic PC interface tasks. Goldberg et al. [4]
used eye movements to infer user intent in real-time
interfaces. Both Aaltonen’s and Goldberg’s systems
use wearable hardware for tracking head pose and
eye movements. Harville et al. [6] used linear depth
and brightness constraints along with twist mathe-
matics to obtain 3D head pose. Matsumoto et al.
[9] used a compact 3D face model to estimate head
pose. Asin [9], Schédl et al. [10], and Cascia et al. [2]
use more complex polygonal head models for tracking
head pose.

Our work significantly differs from the head pose
tracking performed in these projects in several ways.
First, our work differs from that of Goldberg et al.
and Aaltonen et al. in that our system is completely
non-invasive. Unlike the work of Matsumoto et al.
and Schodl et al., our algorithms are simple enough
to run well on consumer-level computers without any



need for special purpose hardware. Our framework
also differs from prior work in that tracking is not lim-
ited to the viewing range of a single camera alone. We
can make use of multiple cameras to estimate head
pose in a much larger viewing volume.

Our algorithm also has the advantage in that it
works robustly in real-time. The simplicity of the al-
gorithm shields our method from having to use error
functions that increase the complexity of other direct-
measurement and optimization-based methods. The
most unique feature of our approach is being able to
track using multiple cameras. This ability to track
head pose using multiple cameras is very important
for larger settings where the mobility of users is sig-
nificant.

3 Setup

The overall tracking system consists of three cali-
brated IBM Blue Eyes infrared lighting cameras [8].
Though we have not determined the scalability limits,
we have experimented with up to six cameras. The
cameras are placed in one of the rooms at Georgia
Tech’s Broadband Institute Residential Laboratory,
which is prone to natural changes in lighting condi-
tions. All cameras are calibrated individually using
the method described by Zhang [12] to obtain the in-
trinsic and extrinsic matrices. We use one computer
with a 600Mhz Intel Celeron processor per camera for
feature tracking. A separate computer with a 500Mhz
PowerPC G4 processor takes the input from the oth-
ers, manages cameras, and executes the pose estima-
tion algorithms.

One of the cameras is chosen as the origin for the
camera coordinate system. All pose measurements
are interpreted with respect to this origin. Prior
information about the relative positions of all cam-
eras is provided to the system before tracking is per-
formed. Our experimental subject pool consisted of
five adults, four male and one female. One of our
camera setups is shown in Figure 1. The camera in
middle, cameral, is the origin of the entire system.
cameral on the left and camera2 on the right are
turned 25 degrees towards the origin of the system,
(i.e. camera0).

4 Head Pose Estimation

We calculate head pose by triangulating correspond-
ing features from two cameras in a temporally coher-
ent manner. Though our system employs multiple
cameras, a set of two cameras is sufficient for deter-
mining the head pose. In the simplest sense, two
corresponding features of a face from two different
cameras can yield the head pose.

Figure 1: Camera setup. From left to right, cameral,
cameral, and camera2.

We assume that the world coordinates of two
eyes of a person are given by P:(X,Y,Z) and
P (X',Y',Z’). The pixel coordinates of the two
eyes are obtained using the eye tracking sub-system.
Then, let (z1,y1), (], y;) be the pixel coordinates of
these two points in cameral and (zg,y2), (25, y5) be
the pixel coordinates of the two points in camera?.
The relationship between the real world coordinates
and the pixel coordinates in the two cameras is given
by the following equations where f is the focal length
of camera and d is the distance between the two cam-
eras:
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Once both P and P’ are calculated, the head pose is
obtained from the slope of the line joining these two
points.
!
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However, using two feature points alone makes the
system highly prone to minor variations in eye move-
ment, resulting in very noisy data. Literature from
multi-view stereo [11] also suggests that 3D informa-
tion about the scene can be better interpreted with
a larger set of corresponding points. This is why
we track two additional dominant facial features, the
mouth corners. We track the corners for two reasons.
First, mouth corners have very strong edges, mak-
ing them easier to locate than non-textured features,
such as the tip of the nose. Second, knowledge of the

Pose = tan



eye location from the eye tracking sub-system makes
it easier to narrow down the search space significantly
for locating the mouth corners using standard tem-
plate matching.

Template matching is sufficient since knowledge
of the eye locations allows us to roughly estimate
the neighborhoods of the mouth corners. We ob-
tained mouth corner templates from a group of per-
sons and empirically chose the pair that generalized
best. Though using correlations is not a robust ap-
proach, we found that the choice in templates did not
significantly change the head pose estimation results.
Moreover, the speed gains obtained from correlation
were more significant than using alternative methods
such as the probabilistic metric proposed by Moghad-
dam et al.[7]. Figure 2 shows all four of the features
being tracked on the face of a subject.

Corresponding pixel coordinates from a set of two
cameras are used to determine the 3D world coordi-
nates of the four features being tracked. When the
cameras are placed in an arbitrary manner, the simple
triangulation method described previously cannot be
used. 3D points are obtained by using the extrinsic
matrices T (translation matrix), R (rotation matrix),
and the intrinsic matrix, M, that are the result of the
camera calibration process. The standard stereo tri-
angulation method described in [11] is used to obtain
these 3D points. Once the world coordinates of the
four points are calculated, the relationship between
the cross product between any three points can be
used to compute the head pose in the z-z plane using

points p1, p2, p3:

T123 = (p2 — p1) X (p3 —p1) (5)
—
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In this manner, for four points there are 16 an-
gles O123(x, 2), 234 (x, 2), 0341.... The average of these
angles is computed to obtain the final head pose.
Though it is not necessary to compute all 16 angles,
all of the angles are used to ensure the robustness of
the computed head pose.

Next, the average head pose angle is interpolated
in real-time to compensate for noise from the frequent
eye motions of the user and camera noise. Second or-
der parabolic interpolation is sufficient for represent-
ing local changes in head pose. However, such in-
terpolation cannot represent global variations in the
data. Fourth order interpolation is necessary to repre-
sent these global changes in pose. Figure 3 shows the
head pose calculated when a user turned their head
from side to side (-30 degrees to +30 degrees). This
interpolation is sufficient for representing one single

Figure 2: Multiple features for camera correspon-
dence.
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Figure 3: Discrete (dots) and interpolated (curve)
averaged angles. Our system uses interpolated angles
to estimate head pose. Outliers are rejected at the
expense of a smooth temporally coherent estimated
head pose.

cycle of head movement. However, concatenated cy-
cles require a higher order of interpolation.

This interpolation not only compensates for data
noise, but also significantly improves the quality of
head pose calculation by providing the fine variations
in pose, which cannot be interpreted by discrete val-
ues obtained from the triangulation method alone.
Even though the system runs in real time (15 fps),
our feature tracking is not fast enough to interpret the
variation of user attention even when a person moves
his or her head at a moderate speed. The smooth
variations given by the interpolated curve are nec-
essary for representing these fine-grained changes in
user attention. The mean error in all head pose calcu-
lations was found to be about + 8 degrees with a very
low deviation. There are two primary sources for this
error. The camera calibration process is one source,
but our interpolation mostly nullifies this. The more
significant source of error is from the eye tracking
sub-system not being able to accurately locate the
eyes. As with any tracking system, the eye tracking



sub-system has a modest error rate associated with it.
These errors are described in detail in [5] and directly
lead to minor errors in angle calculation.

5 Pose with Multiple Cameras

For any practical interactive system, a large viewing
volume is desired so that users in it can be tracked
as they move around. Multiple cameras afford this
ability by providing a large combined viewing volume
over which user behavior can be tracked. However,
tracking with multiple cameras is a very broad prob-
lem that involves issues ranging from system scala-
bility, occlusions, calibration, and camera switching
[3]. In our work, since the head pose calculation re-
quires only two cameras, we assume that the pose ob-
tained from any set of two cameras is independent and
uncorrelated. Therefore, extending the two-camera
head pose tracking to multiple cameras reduces to
choosing the best pair of cameras from a group.

Our experimental setup consists of six cameras.
All cameras are individually calibrated as mentioned
in Section 3, thus adding more cameras does not in-
volve any additional system-wide calibration. Mul-
tiple camera systems could possibly coordinate be-
tween the cameras to avoid occlusions, but we do not
do this because the features we track are very strong
and do not have any intra-camera dependence. More-
over, our algorithm performs robustly without consid-
ering intra-camera relationships to solve occlusions.

The next most important aspect of the multi-
camera version of our system is how to choose the
two cameras to compute pose. A feature dependent
switching metric that makes the best choice between
cameras is an integral part of any multiple camera
system [6]. The next section describes our head pose
angle based switching metric.

5.1 Switching Metric

When tracking head pose using a single set of cam-
eras, there exists an angular limit of tracked head
pose which depends on the features being tracked and
the viewing range of the cameras. Since we use four
facial features to obtain the pose, the angular limit
would be the angle beyond which one or more of these
facial features cannot be tracked. Figure 4 shows one
such scenario where 3 of the 4 features are not being
tracked by one of the cameras. When using multiple
cameras, it is possible for more than two cameras to
see the same features. In such a case, even if one of
the cameras has reached the limiting angle, another
camera in the group can possibly still view the fea-
tures.

Moreover, as the pose angle gets closer to the lim-
iting angle, it is likely to be less accurate. The accu-

Figure 4: Only one out of four features is visible from
this camera.

racy of the pose angle also decreases as the user moves
further away from the cameras. In such a case, if there
is another set of cameras that has a better view of the
face, the system should use those cameras to obtain
the pose angle. This switching from one camera set to
another set is performed using a decision metric. We
experimented with two such metrics: one based on
dot products, and one based on Gaussian functions.

5.1.1 Dot Product Metric

We found standard dot products to be a good switch-
ing metric. The pose angle and the user’s distance ob-
tained from triangulation described in section 3 can
be used to define a pose vector. Let p be the unit
vector defining the head pose, and Z be the magni-
tude of the person’s distance from any camera. Both
p and Z are defined in the common world coordinate
system. The scaled pose vector P is then:

P=17p (7)

Similarly, let ¢ be the unit vector defining the direc-
tion of a camera in the world coordinate system. For
example, camera0 will have ¢ = (1,0°), and cameral
(turned +25°) will have ¢ = (1,25°) etc. Then, the
dot product of the pose vector P and camera vec-
tor ¢, will result in a scalar R as given below. Only
the magnitude of the dot product matters, as its sign
always remains the same in this system.

R=|P-¢ (8)

For example, let us assume that Ry, Ri, and Ry are
the three scalars resulting from the dot product of
the pose vector with the camera vectors of camera0,
cameral, and camera2, respectively. To get the best
switching, we choose the cameras that give the high-
est scores.

5.1.2 Gaussian Metric

The Gaussian metric is based on the intuition that
a camera cannot accurately track all features as the
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Figure 5: Gaussian when the person is closer to cam-
era, higher score.

pose gets closer to the limiting angle. The Gaussian
metric uses the variance to represent the head dis-
tance and angle measurements from each camera.

Figures 5 and 6 show how the Gaussian varies with
respect to the subject’s distance to the cameras. The
variance o and score m for any pose angle 6 is given
by the following equation:

02 =d - tan(Omaz) 9)

1 en (d - tan(0))?
ov2n P s

where 0,4, is the limiting angle, which is chosen to
be 45 degrees. So, for the same pose angle 6, if d > d,
we obtain m > m’. This means that when the person
is standing far off, cameras are less likely to track the
features accurately.

The effectiveness of both of the metrics was tested
based on how often they switched camera pairs for
tracking. A good metric is one in which the pairs
are switched such that the pose remains temporally
coherent as the system switches between cameras. We
found that both of the metrics gave similar results. In
order to keep the final system as simple as possible, we
use the dot product as the camera switching metric.

6 Results

The multiple camera system was tested on five adult
subjects, four males and one female using 3 cameras.
All of the subjects were instructed to move their head

(10)
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Figure 6: Gaussian when the person is far off from
the camera, lower score.

Figure 7: Experimental setup.

in front of the cameras. Two points were marked
on the wall at approximately +30 degrees and —30
degrees in the z-z plane to indicate specific locations
to look at. The angles obtained by the system when
users viewed these locations were compared with the
real angles to obtain the error. The results show that
the system is insensitive to eye size, skin tone, facial
hair, and clothing.

Figure 7 shows an example of the real pose of
a subject. The subject is looking towards camera?2;
her real pose with respect to the origin (camera0) is
around 30 degrees. All the cameras track her four fa-
cial features. Figure 8 is the estimated head pose
obtained after the subject rotated her head about
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Figure 8: Estimated head motions.

Ground truth  Mean error in degrees

0 degrees 5.125
30 degrees 9.96
-30 degrees 8.545

For all angles 7.87

Table 1: Statistics of pose error for all subjects.

three times. The curve is very smooth because the
estimated head pose is based on a large number of
measurements and interpolated to estimate accurate
and temporally coherent head pose (as discussed in
Section 4).

Table 1 shows the statistics of calculated and real
pose error for all of the subjects. These values are
for the multiple camera version of our system. The
average pose error between our subjects is about £8
degrees.

The main limitation of the system is varying light-
ing conditions due to bright sunlight. This is an inher-
ent limitation of all systems using infrared illumina-
tion in the presence of ambient infrared light. Signifi-
cant changes in lighting conditions requires changing

Figure 9: Subject 1: Male with Glasses, evening.

Ground truth

Mean error in degrees

0 degrees 4.3
30 degrees 10.56
-30 degrees 8.36
For all angles 7.74

Table 2: Statistics of pose error for subject 1.

Figure 10: Subject 2: Female, evening.

Ground truth

Mean error in degrees

0 degrees 4.57
30 degrees 9.5
-30 degrees 7.83
For all angles 7.3

Table 3: Statistics of pose error for subject 2.

Figure 11: Subject 3: Male, morning.

Ground truth

Mean error in degrees

0 degrees 6.16
30 degrees 9.43
-30 degrees 8.39
For all angles 7.99

Table 4: Statistics of pose error for subject 3.



Figure 12: Subject 4: Male, morning.

Ground truth

0 degrees 5.47
30 degrees 10.35
-30 degrees 9.6
For all angles  8.47

Mean error in degrees

Table 5: Statistics of pose error for subject 4.

the brightness gain of the cameras, which could be
done adaptively as the day progresses.

Another limitation is caused by the interpolation
process described in section 4. One of the standard
issues with interpolation is the danger of data over-
fitting. Our interpolated head pose cannot represent
subtle changes in pose that can be obtained from the
raw data. However, our system is intended for use in
indoor settings, where the ability to decide whether
a person has looked at a general object is more im-
portant than the minor variations in head pose.

7 Conclusions and Future work

In this paper, we have demonstrated the ability of
our system to reliably track head pose using multiple
cameras non-invasively and in real-time. We are able
to perform robust tracking in a realistic indoor resi-
dential setting, over a number of users with a wider
coverage area than afforded by a single camera. In
addition, our framework does not perform any error
function minimization as in some previous head pose
approaches [6][9], so we avoid getting stuck in local
minima/maxima, yet are able to provide good head
pose estimates in real time. The robustness of the
eye tracking subsystem combined with the multiple
camera framework described in this paper makes our
system highly practical.

We plan on making use of the head pose informa-
tion by combining it with physiological properties of
human attention to track the actual focus of attention
of users in an interactive environment.
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