Edge Vectorization for Embedded Real-Time Systems using the
CV-SDF Model

Dirk Stichling, Bernd Kleinjohann
University of Paderborn / C-LAB
Fiirstenallee 11, D-33102 Paderborn, Germany
{tichel, bernd}@c-lab.de

Abstract In this paper an edge vectorization al-
gorithm is presented. The target architecture of the
algorithm are Embedded Real-Time Systems as can
be found in vehicles, robots or toys. The most im-
portant aspect of this work is not the algorithm as
such but the way how such an algorithm for Em-
bedded Systems with restricted resources is realized.
The edge vectorization is designed using the CV-SDF
model, a computer vision extension to SDF (Syn-
chronous Data Flow graphs) which are widely used in
the domain of Real-Time Systems. Finally an imple-
mentation of the algorithm on a TriMedia TM1100
embedded processor is presented.

Keywords: real-time computer vision, edge vec-
torization, CV-SDF, embedded real-time systems,
TriMedia 1100

1 Introduction

Computer Vision systems more and more tend to
be used in consumer electronic products like Mo-
bile Phones, Automotives, Toys, Personal Robots
etc. All these products are Embedded Real-Time
Systems with special restrictions like little memory,
little computing power and low costs. Hard tim-
ing constraints have to be fulfilled by most applica-
tions like an obstacle detection system for vehicles or
robots. Thus real-time means to meet timing dead-
lines therefore Worst-Case Ezxecution Time Analysis
(WCET) is an important manner.

Only little attention has been paid at combin-
ing the world of Embedded Systems and the world
of Computer Vision. Computer Vision algorithms
sometimes are called real-time but this often only
means that they run with a frame-rate of 10 frames
per second or higher on some kind of PC or work-
station. But only little systematic work has been
done on real real-time computer vision. The CV-
SDF model is one way to specify real-time capable
computer vision algorithms.

The structure of this paper is as follows: Section

3 gives an introduction to the CV-SDF model which
is an attempt to combine the worlds of embedded
systems and computer vision. Based on this model
an edge vectorization algorithm is proposed in Sec-
tion 4 to show how to realize a real-time computer
vision algorithm. The edge vectorization algorithm
is used in an Augmented Reality project called AR-
PDA' where it is used to extract edges of household
appliances like ovens and dishwashers. It is also used
by our soccer playing robots to find the lines of the
soccer field. Section 5 presents the results of our im-
plementation. The paper closes with a conclusion in
Section 6.

2 Related Work

In [3] a modular software architecture for real-
time video processing is proposed. The cornerstone
of the architecture is the Flow Scheduling Frame-
work (FSF). It specifies and implements a common
generic data and processing model designed to sup-
port stream synchronization in a concurrent process-
ing framework. The FSF is a middleware between
the operating system and the application.

In [4] a design methodology of real-time vision
based embedded systems is presented. Based on
a real-time kernel RTKER realized on a TriMedia
multimedia processor implementations of three com-
puter vision algorithms are presented.

In [5] a Domain Specific Language (DSL) for com-
puter vision systems called F'Vision is introduced.
The language bases on Haskell, a general purpose,
purely functional programming language. FVision
uses the XVision C++ library for the computational
operations and therefore is not really real-time capa-
ble in the sense of timing guarantees etc.

All systems described above use some kind of
operating system as lowest layer. Implementations

LAR-PDA is funded by the German ministry for education
and research (Bundesministerium fr Bildung und Forschung,
BMBF).

of the CV-SDF algorithms do not necessarily need
an underlying operating system and thus also sup-
port pure hardware implementations or mixed hard-
ware/software architectures. In contrast to the other
propositions the CV-SDF model directly addresses
the problem of partitioning the image frames into
smaller parts to minimize memory buffers and la-
tency which is important for embedded systems due
to their restricted resources.

3 CV-SDF

The edge vectorization algorithm proposed in this
paper is based on the CV-SDF model first introduced
in [6]. The CV-SDF model bases on Synchronous
Data Flow Graphs (SDF) which are often used in
real-time signal processing applications with stream-
ing data like audio compression and decompression
[2]. SDF graphs consist of nodes which contain the
program code and edges between the nodes. The
edges are FIFO buffers. Each edge is annotated with
the number of tokens the start node produces within
one execution of the node and the number of tokens
the end node consumes. Due to the static nature of
SDF graphs schedules for the execution order of the
nodes can be calculated at compile time. One of the
main features of the SDF model is the real-time ca-
pability. It is achieved due to the static scheduling
and static buffer management.

But the SDF model lacks support for data ac-
cess often used in image processing applications like
kernel-based filter operations and tracking mecha-
nisms. Therefore the CV-SDF model introduces
StructuredBuffers. Instead of simply using a FIFO
buffer with only add and remove operations Struc-
turedBuffers also allow access to other parts of the
buffers.

The CV-SDF model partitions image frames into
slices of identical size. A slice may be one image
line, a 8x8 pixel block or something similar. These
slices are the tokens (the data instances) which are
transferred over the edges of the graph.

The nodes of the CV-SDF graph (called Modules)
contain the computer vision operations in form of one
function for each module. With each execution of a
module (called activation) a fixed number of slices is
consumed and produced by the module.

1 — {1,-1.41,0}

StructuredBuffer

Figure 1: Example of a simple CV-SDF graph

Figure 1 shows a simple CV-SDF graph consist-
ing of two modules My and M;. The output edge
of a module is annotated with the number of slices
the module produces with each activation. The
input edge of a module is annotated with a triplet
{consumed, slice_interval, previous_frames}.
consumed is the number of slices a module con-
sumes with each activation, slice_interval is the
interval of neighboring slices the module needs
access to and previous_frames is the number
of previous image frames the module wants to
access. The last two values of this triplet are new
in contrast to the SDF model. They allow easy
and effective implementations of low-level computer
vision operations.

All modules comply to two principles, that were
introduced to decrease the latency of the algorithm:

1. Linear Processing: The input images of nearly
all devices are transmitted linearly line-by-line
and from left-to-right similar to the analog video
format. Therefore to minimize system latency
all modules of a CV-SDF algorithm also have to
work top-down and from left-to-right without
waiting for a whole image.

2. Incremental Concurrency: All modules have to
provide their output as soon as possible. This
minimizes the size of temporary buffers and also
minimizes the latency of the system.

The main advantages of the CV-SDF model are
the minimization of the buffer usage, the minimiza-
tion of latencies and the real-time capability.

4 The Algorithm

The CV-SDF graph of the proposed edge vectoriza-
tion algorithm is shown in Figure 2.

All slice data-types are line-based. That means
that each module consumes and produces slices
which each correspond to one line of the input image.
There are three different slice data type:

1. GreyImageLine: This data type stores the light-
ness of the pixels of exactly one line of the image.

2. GradientLine: This data type stores the gradi-
ents of the pixels as a result of a Sobel filter. It
also stores the data for one image line.

3. StraightEdgesLine: This data type stores the
numbers of the StraightEdgesBuffer-slots (see
below) the pixels of exactly one line belongs to.

The CV-SDF model is designed for low-level com-
puter vision algorithms and works best with pixel-
based slice-data-types. The vectorized edges are not

Grabber

M,
1

GreylmageLine

GreylmageLine GradientLine

{1,-1..41,0

Non
Maxima
Elimination

M,

GreylmageLine

{1,0..+1,0}

Vectori-
zation

Edge-
Tracking

StraightEdgesLine

Figure 2: CV-SDF graph of the proposed algorithm

pixel-based therefore one buffer associated to each
frame is introduced to store the edges. The buffer is
called StraightEdgesBuffer and the instances are
called StraightEdge. The size of the buffer is lim-
ited at compile time to avoid dynamic memory allo-

cation.
There are two possible
StraightEdge:

representations for

1. Using Start- and End-Points: Only the start-
and the end-pixel of a line is stored. If a new
pixel has to be added to a StraightLine (during
the execution of the algorithm) it has to be de-
cided whether this new pixel replaces the start-
or the end-point.

2. Using Moments: Similar to the representation
of regions in [7] the lines are stored using the
moments of first order and central moments of
second order.

Which representation to use depends on the applica-
tion. The first representation yields better results for
the real end-points of the lines and the second rep-
resentation yields more accurate results (sub-pixel
accuracy) in respect of the whole line because statis-
tical calculations are used.

As shown in Figure 2 the algorithm consists of
the following modules: the Grabber module (Mpy) is
a module representing an image source, a Sobel filter
module (M) to extract edges, a Non-Mazima Elim-
ination module (Ms) to thin out the edges, the Vec-
torization module (M3) to extract the lines from the
pixel image and the Edge Tracking module (My) to
connect the vectorized edges with the corresponding
edges of the previous image frame.

The Sobel filter module (M) is a standard ker-
nel operation with size 5x5. It can be easily imple-
mented as CV-SDF module so that it complies to the
principles Linear Processing and Incremental Con-
currency. One processing step calculates the kernel
values for the pixels of one image line. Therefore it
needs the pixel values of the two previous and the
two subsequent image lines. It consumes exactly one
line and needs no access to previous frames. Thus
the annotation of the input edge is {1, —2.. +2,0}.

The Sobel filter yields information about the
strength and the gradient of the edge. The gradient
is abstracted by one of 8 different values as needed
by the Vectorization module.

The Non-Mazima Elimination module (M) is a
standard computer vision operation similar to the
Sobel filter. It uses the 8-neighborhood of the actual
pixel. Therefore it can be implemented in a similar
way as the Sobel filter. The Non-Maxima Elimina-
tion thins out the edges produced by the Sobel filter.
This is needed to implement a line-following algo-
rithm.

The Vectorization module (M3) implements a
line-following algorithm to vectorize the edges into

StraightEdges. The algorithm is based on ideas
published in [1]. We adapted the algorithm to be
compliant with the concepts Linear Processing and
Incremental Concurrency.

The input to this module are lines with strength
information (GreyImageLine) and the orientation in-
formation (GradientLine). The orientation for each
pixel is abstracted by one of 8 directions as shown in
Figure 3.

Figure 3: Quantization of gradients

The module processes the lines pixel by pixel from
left to right. For the actually processed pixel the
set of potential neighbors is determined. This set
only depends on the orientation of the actual pixel.
Because the algorithm works top-down and from left
to right only the neighbor pixels which have not yet
been processed have to be compared with the actual
pixel. The actual pixel matches with one or more
of its neighbors if the orientation of the actual pixel
and the orientation of the neighbor pixel only differs
one step (in reference to the quantization value 8).

Actual Pixel s Direction =7

Alte
e

Actual Pixel’s Direction = 0

*>¢
¢ ¢ 7

Figure 4: Example of pixel neighborhoods

Figure 4 shows two examples: the neighborhood
of a pixel with orientation 0 and one with orientation
7. The potential neighbors of the pixel with orien-
tation 0 may have orientation 0, 1 or 7. The po-
sition of potential neighbors are all positions of the
8-neighborhood which have not yet been processed
and are not parallel to the actual pixel in respect of
the orientation (e.g. the position below the actual
pixel with orientation 0).

If two or more neighbors match the actual pixel
one of the following actions is performed:

o If all pixels are not yet assigned to a
StraightEdge a new StraightEdge is initial-
ized with the matching pixels.

o If exactly one of the pixels has been assigned
to a StraightEdge all non-assigned pixels are
added to that StraightEdge.

o If two pixels are assigned to different
StraightEdges these StraightEdges are
merged and all non-assigned matching pixels
are added to that merged StraightEdge.

e If two pixels are assigned to the same
StraightEdge all additional non-assigned
matching pixels are added to that merged
StraightEdge.

Due to the method used for scanning the image it is
not possible that more than two pixels are already
assigned to a StraightEdge. The adding of pixels
and the mergence of lines can be done in constant
time. This allows the calculation of a WCET. If
a pixel is already assigned to a StraightEdge the
orientation of the complete StraightEdge is taken
as orientation instead of the orientation of the single
pixel. This is important to only extract straight lines
and not any arbitrary lines. At the end all edges are
vectorized without any further processing.

A StraightEdge is called finished if no pixel
of the subsequent line has been added to the
StraightEdge after the processing of the actual line.
No more pixels will be added to finished edges.

The vectorization module only needs the actual
and the subsequent image line and consumes and
produces exactly one image line. Therefore the an-
notations of the input edges is {1,0.. + 1,0}.

For the start- and the end-pixel of finished
StraightEdges the FEdgeTracking module (My)
searches inside the pixel’s neighborhood of the pre-
vious frame for a corresponding edge. If a matching
edge is found the StraightEdges are logically con-
nected. A fixed pixel window size around the actual
pixel is used to guarantee a maximum run-time so
that a WCET analysis is feasible.

5 Implementation and Results

The main target architecture of the edge vectoriza-
tion algorithm is the TriMedia TM1100 processor?
which is a 100MHz DSP-like multimedia processor
developed by Philips.

2http://www.trimedia.com

The TriMedia processor has hardware support
for some aspects of computer vision like color space
conversion, scaling and filtering. It has a 5-tap 1-
dimensional hardware filter which we use to imple-
ment most parts of the 5x5 Sobel filter.

The image grabber is also part of the TriMedia
processor. It grabs the input image and stores the
data in the main memory without the need of the
processor’s core CPU. Therefore only the Modules
Ms, M3 and My and some parts of M; are imple-
mented using the core CPU.

Memory Run-Time

My: 5 lines = HW: 20ms
Grabber 880 Bytes SW: /

M;y: 2x3 lines = | HW: 10ms

5x5 Sobel 1056 Bytes SW: 4ms
Ms: 2 lines = HW: /

Non-Max Elim. 352 Bytes SW: 8ms
Ms: 1 image = HW: /

Vectorization 50 kBytes SW: 10ms
My: 1 image = HW: /

Tracking 50 kBytes SW: 12ms

Total: 101.8 kBytes | HW: 30ms

SW: 34ms

Table 1: Memory consumption and run-times of the
TriMedia implementation

Table 1 shows the memory consumption and the
run-times of the modules of the TriMedia implemen-
tation. The image size was 176x144 pixels. The
memory values correspond to the output-buffers of
each module. The run-times are devided into hard-
ware (HW) and software (SW) run-times.

The run-time of the analysis of one image is 34ms.
This corresponds to a framerate of more than 25
frames per second.

These values show that pixel-based low-level com-
puter vision algorithms can be realized on embed-
ded real-time systems with the full frame-rate of
25 frames per second while a maximum run-time is
guaranteed.

All modules of this edge vectorization implemen-
tation are real-time capable but we do not have any
analytic results of the worst case execution times of
the modules yet. This will be done as a next step.

Figure 5 shows an vectorization example. The left
part is the original image and the right part shows
the vectorized edges. The image shows a typical
scene we are confronted with within our AR-PDA
project.

Figure 5: Edge vectorization: Input image and vec-
torized edges

6 Conclusion

In this paper we presented an edge vectorization al-
gorithm based on the CV-SDF model. The algo-
rithm as such is not the most interresting part but
the way how to implement such algorithms on em-
bedded real-time systems. First an introduction to
the CV-SDF model was given and then the algorithm
using 5 modules was presented. The results of the
implementation show that it is possible to implement
computer vision algorithms with very little memory
footprints while guaranteeing deadlines using a worst
case execution time analysis.

Based on the CV-SDF model we also realized a
color segmentation algorithm and an obstacle detec-
tion algorithm. Both algorithms are used by our
soccer playing robots which are taking part at the
RoboCup middle-size league competition.

All these algorithms are used seperatly at the mo-
ment. In the future we will combine these three al-
gorithms to built one single system.

References

[1] M. Aste, M. Boninsegna, and B. Caprile. A
Fast Straight Line Extractor for VisionGuided
Robot Navigation. Technical report, Istituto per
la Ricerca Scientifica e Tecnologica, 1994.

[2] S. Bhattacharyya, P. Murthy, and E. Lee. Syn-
thesis of embedded software from synchronous
dataflow specifications. Journal of VLSI Signal
Processing, 21:151-166, 1999.

[3] Alexandre R.J. Francois and Gérard G. Medioni.
A modular software architecture for real-time

video processing. In B. Schiele and G. Sagerer,
editors, Computer Vision Systems, Second In-
ternational Workshop, ICVS 2001, pages 35-49,
Vancouver, Canada, 2001. Springer-Verlag.

Vivek Haldar. Design of embedded systems for
real-time vision. In Indian Conference on Graph-
ics, Vision and Image Processing (ICVGIP),
2000.

Alastair Reid, John Peterson, Greg Hager, and
Paul Hudak. Prototyping real-time vision sys-
tems: An experiment in DSL design. In Pro-
ceedings of the 21st International Conference
on Software Engineering, pages 484-493. ACM
Press, May 1999.

Dirk Stichling and Bernd Kleinjohann. CV-SDF
- a synchronous data flow model for real-time
computer vision applications. In ITWSSIP 2002:
9th International Workshop on Systems, Signals
and Image Processing, Manchester, UK, Novem-
ber 2002.

Dirk Stichling and Bernd Kleinjohann. Low la-
tency color segmentation on embedded real-time
systems. In DIPES 2002: IFIP WCC 2002
Stream 7 on Distributed and Parallel Embedded
Systems, Montreal, Canada, August 2002.

