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Abstract 
 

This paper presents a perceptual organization 
based method for detecting Vessel Junctions 
(VJs) from retinal images. A retinal image is 
first segmented into edge traces which contain 
vessel boundaries. Each trace is divided into 
generic curve segments (GCSs) at curve 
partitioning points (CPPs). CPPs are the places 
on a trace from where the continuity of GCSs 
was broken according to perceptual 
organization criteria. The extracted CPPs and 
GCSs are the structure features of VJs. The 
detection algorithm uses CPPs as seeds for 
searching VJ patterns. VJs have two classes 
which include branching type and crossing type 
defined according to their structure features. 
Experiment results are provided. 

 
1 Introduction 

 
Retina vessel extraction is very useful for 
medical diagnose applications [1,2,3,4]. A good 
vessel map will give us useful geometric 
information for the allocation of other objects 
in retina images, for instance lesions and so on. 
The changes of a vessel map can also closely 
relate to some disease symptoms such as 
diabetic retinopathy. There is a high demand 
for automatic or semi-automatic tools of 
detecting and measuring vessels or vessel-
related data for efficient and accurate diagnose 
purpose. 

 
People were seeking for good solutions in this 
field for more than ten years and have 
developed various methods in tackling the 
problems [4,5,7,8,9,10,11,12]. The main stream 
methods include matched filter [7,9,10], edge 
detecting and parallel tracking [4,12], etc. 
Although the matched filter method achieved 
some robustness in handling noise, but 
requires intensive computation. The edge 
detection based solutions seemed receiving 

more attentions because of the computation 
efficiency. However the most existing edge 
based methods [4,12] are mostly semi-
automatic and require intensive input data 
from the human operator, such as the start and 
end points for detecting a vessel, parameters 
for parallel tracking, optic disc locations, etc. 
Vessel junctions are the control points for 
retina image registration [8,12], and often 
treated as start and end points for tracking 
individual vessels. It is hardly to see any 
publications which provide automatic junction 
detection and representation, rather the 
manual drawing methods were widely adopted.  

 
In this paper we present an automatic method 
for detecting VJs. By applying an existing edge 
tracker, we convert an image into edge traces 
which cover vessel boundaries. Each trace is 
divided into Generic Curve Segments (GCSs) at 
Curve Partitioning Points (CPPs) based on 
perceptual organization principles [6]. The 
extracted CPPs and GCSs are then used as 
domain heuristics for detecting VJs. The 
preliminary results were showing that the 
proposed method has great potential for 
accurately locating VJs at a very low 
computation cost. Further, the method does not 
need the optic disc data in advance for locating 
VJs  and therefore for tracking vessels. 
 
In section 2, the perceptual organization model 
will be introduced. The details of junction 
representation and detection will be presented 
in section 3. Section 4  is experimental results 
and discussions. Conclusions and future 
research will be discussed in  the last section.  

 
2 Perceptual Organization 
Models of GCS and CPP 

 
For qualitative curve shape recognition,  
Gibson suggested many years ago [13] that a 
simple visual line or border has two variable 



 

 
Figure 1: The qualities of a simple line observed by Gibson [13]: (a) “left 

slant…zero slant…right slant”, and (b) “convex…straight…concave”. 
 

qualities besides length – one is “left slant .. 
zero slant .. right slant”, and the other is 
“convex .. straight .. concave” as shown in 
Figure 1. A line looks as if it had those 
phenomenal properties and behaves in 
perception as if it had them. They may be 
referred as the quality of direction (linear 
slope) and curvature (linear shape). 
Mathematically, these two variables determine 
a curve at all of its points. Phenomenally, the 
two corresponding qualities determine a visual 
line or border in all of its segments. Gibson 
further suggested that if curvature and 
direction are variable qualities of a border, 
there is a possibility that a closed border – a 
form – may be reduced to variable qualities. 
These suggestions attempted to provide an 
explanation of how our retina carries out a fast 
transformation when objects moved around in 
a 3D world. 
 
Although Gibson’s observation and other 
psychological studies didn’t provide direct 
explanations on possible approach or 
mechanism used by human vision in shape 
perception, they did conclude certain useful 
hints which may be useful in developing 
computation models for perceptual curve 
recognition. Gao [6] presented a qualitative 
model for curve recognition by partitioning and 
re-merging curves in terms of GCSs. The 
quality of a GCS can be defined based on 
certain perceptual organization rules (i.e., 
Gestalt laws), such as similarity, proximity, 
and continuity of the points lying on the GCS. 
 
To derive qualitative shape descriptors, such 
as from Gibson’s observations, we need to 
model the Gestalt laws for both  GCS and CPP 
properly. The classification of GCSs should be 
based on the best breaking down curves in 
terms of  the perceptual characteristics of 
GCSs. In the psychological experiments of 
curve partitioning [14], it is found that human 
subjects partition two-dimensional curves 
according to three different objectives. They 
tend to choose a set of contour points that: 1) 
best mark those locations at which distinctive 
curve segments are “glued” together; 2) best 
allow the reconstruction of the complete curves; 

3) best allow a viewer to distinguish a given 
curve from the others. Figure 2 shows the 
examples of two partition methods, (a) the 
conventional method which breaks down 
curves based on the discontinuation of 
tangents and (b) the proposed method which 
partitions a curve based on the monotonicity 
discontinuation of descriptive characteristics 
including tangents (more detailed will be 
discussed shortly). The method (b) is chosen 
for curve partitioning because the partitioned 
segments are the most simple curve pieces and 
descriptively sound, which are corresponding 
to the GCSs given in Figure 3. Each GCS has 
its own unique descriptive characteristics and 
represents a general class of qualitatively 
distinguishable curve segments. The 
computation model of GCSs is introduced 
below.  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2:  An illustration of two types of 
partitions: (a) Partitions based on 
discontinuation of tangents;  (b) Partitions 
based on discontinuation of tangent 
monotonicity. 
 
Analytic descriptors of polynomial curves have 
a general expression: 

  f (x, a) = 0  (1) 

where x denotes an image point and a is a 
vector of parameters. The procedures of 
analytic solutions for detecting curves, as 
presented in many algorithms, are relying on 
calculating a for each edge pixel x, such that f 
(x, a) = 0.  In contrast, a generic curve segment 
GCS is expressed by 

  GCS = {x | p(x)},  (2) 



where x is an edge point, p(x) indicates the 
point satisfies the property p, {x | p(x)} denotes 
a set of points sharing the property p, and GCS 
is a symbolic label of the set. 
 
The property p is the monotonic characteristics 
of GCS which can be qualitatively defined by a 
set of binary functions described in the 
following. Given a curve y = f(x) and its inverse 
function x = ϕ(y), their first derivatives are 
represented by f’(x) and ϕ’(y) respectively. The 
property p of a point x can be fully described by 
the function set 

 p (x) = { f(x), ϕ(y), f’(x), ϕ’(y)} (3) 
 

In other words, a GCS is a set of curve points 
which share a same property p. Figure 3 shows 
eight classes of GCSs which  are qualitatively 
defined in Table 1. 
 

 
 
Figure 3: A set of generic curve segments 
(GCS). 
 

GCS    f(x) ϕ(y) f’(x) ϕ’(y) 
CS1 M+ M+ M+ M- 
CS2 M- M- M+ M- 
CS3 M+ M+ M- M+ 
CS4 M- M- M- M+ 
LS1 M- M- c c 
LS2 M+ M+ c c 
LS3 c N/A 0 ∞ 
LS4 N/A c ∞ 0 

 
Table 1. The definitions of CGS, where M+ and 
M- denotes monotonic increase and decrease 
respectively. 
 
 
The GCSs are perceptual curve segments 
which can be used to group curves 
qualitatively. For instance, the classes CS1 to 
CS4 can be used to form various conic sections. 
The straight line segments LS1 and LS2 are 
defined according to two general groups of 
slopes: 0o to 90o and 90o to 180o respectively. 
LS3 and LS4 are special cases for horizontal 
and vertical lines. Accordingly, the points 
which break down curves into GCSs are the 

positions on the curves at which the transitions 
of monotonicity take place. These perceptually 
significant breaking points, i.e., CPPs, are the 
general types of joints of GCSs as illustrated in 
Figure 4 and Table 2. Although CPP1 to CPP4 
are not view invariant, they are perceptually 
stable features and hence very useful for 
grouping curve structures.  
 

 
 
Figure 4:  The definitions of CPPs. 
 

Rule # Definitions 
G1 (CPP1, CS1, CS2) 

G2 (CPP2, CS2, CS3) 
G3 (CPP3, CS3, CS4) 
G4 (CPP4, CS4, CS1) 
G5 (CPP5, CS1, CS3) 
G6 (CPP6, CS2, CS4) 
G7 (CPP7, CS, LS) 
G8 (CPP8, LSi, LSj) 

 
Table 2. The definitions of CPPs  (curve 
grouping  rules). 
 
 
3 VJ Detection  
 
3.1 VJ Structures  
 
Vessel junctions may be divided into two 
general types as shown in Figure (5):  
 
1) Branching or dividing junctions from 

where a vessel is divided into sub-vessels; 
2) Crossing junctions from where two 

separated vessels are over crossing each 
other; 
 

Branching junctions can be further divided into 
two subclass, i.e., Y junctions (we also call it 
bifurcation junctions) and T junctions as 
illustrated in Figure 5 (b). Y junctions 
correspond to the generic structure of one CPP 
and two associated parallel GCS pairs, and T 



junctions are defined by two CPPs and three 
associated parallel GCS pairs. In contrast, the 
type of crossing junctions has a generic 
structure of four CPPs and four associated 
parallel GCS pairs.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) 
 
 
 
 
 
 
 
 
 
 
 

 
(b) 

 
Figure 5: (a) Two types of junctions in 
circulated areas; (b) Two types of junction 
structures. 
 
Associated parallel GCSs are two nearest GCSs 
which belong to the same perceptual class (see 
Figure 3, i.e. they have a same GCS label), and 
satisfy a pre-defined vessel width. We can 
detect them through the following procedures: 
1) find all nearest GCS pairs from same GCS 
class, then 2) measure the distance for each 
associated pair. A pair of vessel GCSs is found 
if they passed the distance measure.  
 
From Figure 5, one may compare the junction 
structures defined in (b) with the true vessel 
junctions observed in the original image (a), 
such as the two example cases marked by 
circles. In other words, CPPs are critical points 
which provide useful heuristics for grouping 
vessel junctions. 
 

Curve partitioning focuses on the segmentation 
of generic curve features CPPs and GCSs 
according to the monotonic properties of GCSs 
which are perceptually significant edge 
primitives.  Retina vessel boundaries are 
connected GCSs which are mostly smooth 
curve segments. The detection of vessel 
junctions is a process of grouping CPPs and 
associated parallel pairs of GCSs for matching 
the structure patterns defined in Figure 5 (b). 
 
3.2 Edge Traces and Noise Rem-
oval  
 
We applied an existing edge tracker for 
extracting edge traces (one pixel wide linked 
edge pixels). The result of edge trace map of 
the original image (Figure 5 (a)) is shown in 
Figure 6.  

 
Figure 6: The detail edge traces extracted from 
the original image (Figure 5 (a)). 
 
The edge tracker was implemented based on 
the perceptual model of generic curve segments 
presented in the previous section. Each vessel 
GCS can be segmented based on the following 
criteria: it has  a) a continued edge strength (i.e. 
with low variance on edge uniformity), b) a 
minimum length, and c) a continued 
smoothness. The criteria provide strong 
constraints for suppressing the noises (i.e. non-
vessel GCSs). Gaussian blurring is applied as a 
pre-processing for smoothing the edge map. 
Post processing is used to remove the short, 
non linear noise traces by tracking the first 
derivative along each edge traces. 
  
 
3.3 VJ Detection Procedure 
  
By tracking and monitoring the edge pixel’s 
direction parameters, dx, dy (i.e. x and y 



gradients), and r (i.e. dy/dx), we can 
successfully allocate all the CPPs. Meanwhile, 
we also introduced a set of new CPP points 
which associated the direction changes at 45 
degrees, as illustrated in Figure 7, for the 
purpose of enriching the sensitivity of GCSs 
direction changes for locating vessel junctions. 

 
(a) 

 

 
        (b) 

 
Figure 7:  (a) New CPPs in black color and the 
old CPPs in grey color; (b) All CPPs including 
both new and old types. 
 
 
A valid CPP is a junction seed which can be 
verified by finding its two associated parallel 
pairs of GCSs. Accordingly, the CPP map can 
be further reduced from Figure 7 (b) to Figure 
8 (a).  
 
Through the tracking of the monotonic changes 
of edge traces, CPPs and GCSs are detected 
and classified. The extracted junction features 
are then used for searching and matching 
vessel junctions. The general procedure of 
junction detection is described below.  
 
Vessel Junction Detection Procedure: 
 
1) Extract edge traces from retina image: 

• Smooth image by Gaussian blurring 
• Apply the edge tracker to extract edge 

traces;  

 
            (a) 

 

 
            (b) 

 
Figure 8: (a) Valid CPPs for grouping vessel 
junctions; (b) Grouped vessel junctions. 
 
 

• Remove short and non-linear noise 
traces;  

2) Detect vessel junctions: 
• Tracking edge traces 
• Partitioning edge traces 

For each trace 
• Detecting CPPs 
• GCS classification 

• Vessel GCS segmentation by 
evaluating each GCS using the vessel 
GCS criteria 

• Vessel GCS grouping for associated 
parallel pairs 

• Vessel junction grouping 
• V junction grouping  
• T junction grouping  
• Cross junction grouping 

 
Vessel diameters are ranging from 3-8 pixels 
for parallel GCSs matching. The grouping 
result of vessel junction detection was shown in 
Figure 8 (b), and marked with the circles. 
 



The junction locations are defined by the 
centers of the junctions according to the 
notions described in Figure 9 to Figure 11.  
 
Before we find the centers of the junctions, we 
need to know the branching pair points. Each 
junction can be described as several vessel 
segments intersecting in a spot. Before 
reaching the intersection spot, any points 
located on one of the two parallel boarders of a 
vessel segment can be matched to another 
parallel point located on it’s pair vessel 
segment board through parallel tracking. The 
last pair points before reaching the junction 
spot are called branching pair points. 
 
For crossing junction, we link the center point 
of two opposite branching pair points. The                   
intersection of these two crossing line is 
defined as the location of this crossing junction 
(see the solid gray circle of the Crossing 
Junction picture shown below).  
 
 
 
 
 
 
 
 
 
 
 
Figure 9:   Locate center of Crossing Junction. 
 
For Bifurcation Junction, we find the center 
point of two points located on same trace but 
belong to two different branching pair points. 
Then link all the three points to find the center 
point of this triangle. The center point as 
shown below in gray solid circle is defined as 
the location of Bifurcation Junction.  
 

 
Figure 10:   Locate center of Y (Bifurcation) 
Junction. 
 
For T junction, we link the center points of two 
similar branches’ (with similar branching 
direction) pair points, and then draw the 
second line from the center of the third 
branch’s pair points towards the linked line 

along the reverse direction of that branch. The 
intersection is the location of T junction. 
 
 
 
 
 
 
 
 
Figure 11:   Locate center of T Junction. 
 
3.4 Result Discussion 
 
Testing result of the junction detection is 
shown in Figure 8. The sensitivity of the 
detection on the specified two kinds of 
junctions is extremely high on our testing 
image. Curve partitioning method provides an 
efficient way in handling junction detection.  
 
Though the testing result shows a very high 
sensitivity of junction detection, the detection 
algorithm still need to be further improved to 
accommodate varies kinds of retina images. 
The junction detection algorithm assumes we 
should be able to detect all the junction CPP 
points. However, some junction CPPs’ locations 
may not be correctly detected because of the 
noise objects near the CPP or rotation of the 
junction structure.  
 
 
4 Conclusion 
 
This paper presented a preliminary result of 
applying perceptual organization models for 
vessel junction detection from retina images. 
The perceptual models of curve partitioning 
and grouping were succeed in providing a set of 
generic edge tokens. The segmented edge 
tokens are examined and grouped into vessel 
segments and junctions. Since the token 
features are descriptive in nature, therefore 
they can be handled qualitatively in promoting 
robustness and efficiency. In further research, 
we will conduct more experiments on various 
cases. Meanwhile we will investigate how to 
combine more domain heuristics of retina 
images into the perceptual edge tracking 
mechanism for improving the current 
implementation. 
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