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Abstract

This paper presents a perceptual organization based
method for describing, extracting and grouping
generic edge features, called Generic Edge Tokens
(GET). A GET is a perceptually significant image
primitive which represents a class of qualitatively
equivalent structure elements. A complete set of
GETs includes both linear and non-linear segment
classes and junctions of the segments. Edge traces
extracted from image are segmented into GETs ac-
cording to Gestalt Laws of proximity, continuity, and
similarity in terms of descriptive image geometry
and edge strength. In grouping 2D shapes, an ob-
ject is described by its made-up GETs and the rela-
tions of GETs. The examples of ellipses and paral-
lelograms groupings are provided as an illustration of
the method.

1 Introduction

Object recognition is one of the most important fields
in computer vision. Perceptual grouping, as its pre-
processing, is the study of how features are clustered
into perceptually significant groups for object recog-
nition. The task seems very easy for the biological
systems, yet it is very difficult to precisely formal-
ize and describe these nature ability. Grouping is
an extremely difficult problem from a computational
point of view, and is certainly one of the least un-
derstood problem in vision [2]. The U.S. High Per-
formance Computing and Communications initiative
also identifies perceptual grouping as one of its four
problem areas [9].

Despite the difficulties, in [12], various ap-
proaches of perceptual grouping to computer vision
were summarized. Using perceptual grouping, Boldt
[7] developed a bottom-up hierarchy of abstraction
levels for collinear grouping of straight line segments.
Based on proximity and good continuation in a lo-

cal neighborhood, Dolan and Weiss [1] applied per-
ceptual grouping to the extraction of curved lines.
Rom and Medioni [10] provided a segmented axial
description of a given shape by calculating the cur-
vature changes. Mohan [8] suggested a method of lo-
cating collated features to describe 3D objects with
particular shapes. In [13], 3D surface shapes were
inferred from two kinds of 2D contours as parallel
and skew symmetries. Saint and Medioni [11] pre-
sented a representation of edge contours extracted
by symmetries and grouping operations. Kriegman
[5] used a parameterized model for object recogni-
tion and positioning, and the parameters were de-
rived from the theoretical contour and the observed
data points. Most of these techniques were quanti-
tative methods and involved intensive computation.

In this paper we present a generic approach
for perceptual representation and grouping of 2D
shapes. The robustness and efficiency of the method
are demonstrated in the experiment results.

The paper is organized as the follows. Section 2
introduces perceptual organization and GET mod-
els. In section 3, the representation scheme and the
grouping rules of ellipse and parallelogram are pre-
sented. Section 4 is the final conclusion.

2 GET Representation and

Segmentation

2.1 GET Models

Generic Edge Tokens (GETs) are perceptually sig-
nificant image primitives which represent classes of
qualitatively equivalent structure elements. A com-
plete set of GETs includes both linear and non-linear
segment classes and junctions of the segments.

Gao and Wang [3] presented a curve partition
method in a very generic form which allows the ma-
chine to perform a curve partition task following



the similar objectives in human visual perception.
Generic segments (GSs) were used as the percep-
tual tokens. GSs can be tracked using tangents and
traces of image edge curves. First, the initial edge
pixels for tracking edges were determined based on
the minimum dimension of the application objects,
then the edge pixels along the traces were tracked
according to the definitions of GSs. The detailed
description of the algorithm can be found in [3].

A quantitative computation model of GS can be
expressed as:

GS = {p | ρ(p)}

i.e., GS is a set of points satisfying some proper-
ties ρ. As shown in Figure 1 (b), generic segments
are classified into eight categories according to the
tangent functions of GS y = f(x) and its inverse
function x = ϕ(y). The computative definitions for
these generic segments are given in Table 1. We will
give their detailed descriptions in section 2.2.
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Figure 1: (a) The examples of curve partition. (b)
The eight categories of generic segments. (c) The
eight categories of curve partition points.

A curve partition point (CPP ) is a perceptually
significant point at which a transition of monotonic-
ity takes place. The monotonicity is evaluated along
a single segment in terms of monotonic increasing
(denoted by ”M+”) or monotonic decreasing (de-
noted by ”M−”). A CPP is the junction point at
which two adjacent GSs are grouped into a structure

GS f(x) ϕ(y) f ′(x) ϕ′(y)
CS1 M+ M− M+ M−
CS2 M− M− M+ M−
CS3 M+ M+ M− M+
CS4 M− M− M− M+
LS1 M− M+ c c
LS2 M+ M+ c c
LS3 c n/a 0 ∞
LS4 n/a c ∞ 0

Table 1: The definition of GSs. M+ and M− stand
for monotonic increasing and decreasing properties
respectively.

which corresponds to a stable perception. As shown
in Figure 1 (c), CPP are classified into eight general
types as well. Their definitions are given in Table 2.

Rule# Definitions
G1 (cpp1, CS1, CS2)
G2 (cpp2, CS2, CS3)
G3 (cpp3, CS3, CS4)
G4 (cpp4, CS4, CS1)
G5 (cpp5, CS1, CS3)
G6 (cpp6, CS2, CS4)
G7 (cpp7, CSi, LSj)
G8 (cpp8, LSi, LSj)

Table 2: The definition of CPP .

2.2 GET Representation

GETs are the collections of the general feature
classes GSs and CPP s. Figure 2 is the hierarchy
structure of generic edge tokens. Here, Tcpp means
the true CPP and V cpp means the virtual CPP .
Tcpp is view invariant CPP . V cpp is sensitive to ro-
tation change, but useful for grouping CSs to conic
sections.

A general description of a segment is developed
on the perceptual model of GS:

GSc [pb, pm, pe]

where pb represents the begin point of this segment,
pm for the middle point and pe for the end point, c is
the indicator signifying which category this segment
belongs to. In this description (in Figure 3), the
positions of the begin point pb and the end point pe

of this segment are exchangeable.
For the curve segment (CS), the curvature in-

formation of this curve is characterized by its mid-
dle point pm. While for straight line segment (CS),
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Figure 2: GET concept hierarchy.
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Figure 3: A GS.

three points pb, pe and pm are in the same straight
line, so the line can be determined only by its be-
gin point pb and end point pe, and the middle point
pm is redundant. Therefore we set the value of pm

in straight line segments as null. The descriptions
for the curve segment and straight line segment are
respectively:

CSc [pb, pm, pe]

LSc [pb, null, pe]

The general description of a CPP is represented
as:

cppc [p,GSi,GSj], i 6= j

where p stands for the junction point, GSi and GSj
represent different generic segments, and c denotes
which type this CPP is. In this description (Fig-
ure 4), GSi and GSj share one end point p, i.e.,
GSi [p, pmi

, pei
], GSj [p, pmj

, pej
].
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Figure 4: A CPP .

The general curve partitioning rules and group-
ing rules are both based on these generic perceptual

tokens. All these tokens are perceptually distinguish-
able and can be defined qualitatively. They will be
used as the basic elements of perceptual organization
for qualitative analysis of different forms.

To describe an edge trace detected from image,
we use a chain of GETs. The syntax representation
of a trace is defined as:

T {GSi1 , cppj1 , GSi2 , · · · , cppjn
, · · ·}

The compound 2D structures of (a), (b) and (c) in
Figure 5 are described by their syntax representa-
tions respectively: Ta {LS3, cpp7, CS2, cpp5, CS3,
cpp2, CS4, cpp4, CS1, cpp7, LS3}, Tb {LS2, cpp8,
LS3, cpp8, LS1, cpp8, LS2, cpp8}, Tc {LS4, cpp7,
CS2, cpp1, CS1, cpp7, LS4, cpp7, CS1, cpp1, CS2, cpp7}.
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Figure 5: Trace examples.

A demonstration of GET segmentation is given
in Figure 6, which shows the result CSs and LSs
separately.

2.3 Segmentation

GSs are defined by the monotonic property of the
curve segments in Table 1 and illustrated in Figure
1 (b). Figure 7 is a further graphic illustration of
the definition of Table 1. For any curve segment, its
monotonic change along X and Y axis are denoted
as: 4x1,4x2, · · · ,4xn and 4y1,4y2, · · · ,4yn re-
spectively, where P0P1, P1P2, · · ·, Pn−1Pn are
equally partitioned curve pieces which can be sin-
gle point or multi-points interval lying on this seg-
ment. As we introduced, a general curve function
and its inverse function are expressed as y = f(x)
and x = ϕ(y). Their first derivatives are represented
by f ′(x) and ϕ′(y) respectively and their definitions
are

f ′(Pi) =
4yi

4xi

ϕ′(Pi) =
4xi

4yi

For instance, the curve segment in Figure 7 has
the property: as y1 > y2 > · · · > yn, f(x) is mono-
tonic increasing; x1 > x2 > · · · > xn, so ϕ(y) is



Figure 6: From the upmost to the bottom: (1) The
original image; (2) Segments display; (3) Curve seg-
ment classes; (4) Line segment classes.
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Figure 7: A graphic illustration of a curve segment.

monotonic increasing; f ′(x) is monotonic decreasing,
i.e. f ′(P1) < f ′(P2) < · · · < f ′(Pn), and ϕ′(y) is
monotonic increasing, i.e. ϕ′(P1) > ϕ′(P2) > · · · >
ϕ′(Pn).

According all these properties, eight categories of
generic segments are characterized so that GSs can
be tracked qualitatively from image.

3 Perceptual Grouping

As Lowe [6] stated: There is a tendency for curves
to be completed so that they form enclosed regions.
To form a 2D shape, perceptual grouping takes place
after GETs have been detected in an image. In the
grouping process, cognition is not involved and it is
unconscious.

Grouping processes rearrange the given data by
eliminating the irrelevant data items and sorting the
rest into groups, each corresponding to a particular
object [4]. Grouping involves computationally in-
tensive work of deriving structures from the images.
GET based on perceptual organization can reduce
the cost.

3.1 Ellipse Grouping

An ellipse is a closed planar curve which can be de-
scribed qualitatively using GETs. Such a represen-
tation of ellipse is given in Table 3 which corresponds
to the concepts illustrated in Figure 8 and Figure 9.

In Figure 9, an ellipse is represented by a graph in
which each vertex stands for a CPP and each edge
represents a GS.

As shown in Figure 8 and Figure 9, to group
GETs into an intact ellipse, four types of curve seg-
ments and four types of CPP s must be identified.
For incomplete matching, if there exists at least three



Ellipse {
CS1 [p1, pm1

, p4]
cpp1 [p1, CS1, CS2]
CS2 [p3, pm2

, p1]
cpp3 [p3, CS2, CS3]
CS3 [p2, pm3

, p3]
cpp2 [p2, CS3, CS4]
CS4 [p4, pm4

, p2]
cpp4 [p4, CS4, CS1]
}

Table 3: The definition of ellipse.
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Figure 8: An ellipse model.

these CSs or three CPP s in a compound GET struc-
ture, these information gives viewers the significant
meaning of an ellipse. So for any detected shape, we
measure its confidence as:

Confidence = PShape

(∑

GETImage
∑

GETModel

)

where PShape means the certainty of the grouped
shape could be,

∑

GETImage is the sum of the
GETs satisfied the structure shape from image,
∑

GETModel is the total of GETs in the grouping
model. The conditions of some possible incomplete
matches are illustrated in Figure 10. For instance, a
contour which has at least three structurally consis-
tent CPP s or has at least three structurally consis-
tent CSs is a strong indication that it is an ellipse.
Therefore we can assume that we found an ellipse
with the confidence measurement above 75%. This
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Figure 9: The graph representation.

tolerance is also useful in the recognition of partly
occluded objects.

(a)
 (c)
(b)


Figure 10: Some examples of possible incomplete el-
lipse models.

The ellipse grouping procedure is given in Algo-
rithm 1.

Algorithm 1

1. Classify all CPP s into eight categories, and
choose the categories cpp1, cpp2, cpp3 and cpp4

as the candidate groups;

2. Start from any given CPP cppb1 [pb1 , CSi, CSj ]
in candidate groups, according to the grouping
rules, find the possible candidate CPP s in other
candidate groups:

(a) Along clockwise direction, find the
possible adjacent CPP s sequence:
cppb2 [pb2 , CSj , CSk], cppb3 [pb3 , CSk, CSl]
and cppb4 [pb4 , CSk, CSi];

(b) Along counterclockwise direction, find
the possible adjacent CPP s sequence:
cppb4 [pb4 , CSk, CSi], cppb3 [pb3 , CSk, CSl]
and cppb2 [pb2 , CSj , CSk]. This process will
be stopped if any CPP was already de-
tected in clockwise searching.

(c) According to the confidence measurement
to decide whether to save it as an ellipse.

CPP s provide strong evidence for grouping a
meaningful objects. So using our generic model, al-
gorithms based on recognizing from the CPP s are
feasible as well and the task is to find the closed con-
tours with four types of CPP s instead of finding four
types of CSs. This flexibility is very helpful for the
recognition of occluded contours in the future pro-
cessing.

3.2 Parallelogram Grouping

Parallelogram is a four-cornered plane figure with op-
posite edges parallel. Mapping it to our perceptual
tokens, the parallelogram (in Figure 11) consists of
two pairs of parallel LSs and four CPP s which sat-
isfies Table 4.



Parallelogram {
LSi [p4, N, p1]
cpp8 [p1, LSi, LSj]
LSj [p1, N, p2]
cpp8 [p2, LSj, LSi]
LSi [p2, N, p3]
cpp8 [p3, LSi, LSj]
LSj [p3, N, p4]
cpp8 [p4, LSj, LSi]
}

Table 4: The definition of parallelogram.

Figure 9 is also the graph representation of a par-
allelogram model. Both ellipses and parallelograms
have the same graph representation. The difference
lies in the types of the CPP s and GSs. This reduces
the complexity of the graph representation scheme
and provides the formalism on the construction of
the graph model for the higher level of abstraction.
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Figure 11: A parallelogram model.

To recognize a parallelogram, segments which
are parallel with a certain tolerance (δ < 10o) are
grouped as parallels. Segment pairs which meet
these constraints generate parallels. For each LS,
the possible candidate paralles are retrieved from the
same group.

If given a contour which has at least three struc-
turally consistent CPP s or has at least three struc-
turally consistent LSs, there is a strong indication
that that is a parallelogram and we assume we found
a parallelogram with the confidence measurement
above 75%. Therefore we can assume that we found
a parallelogram. This tolerance is set for the recog-
nition of partly occluded objects. Some possible in-
complete matches are illustrated in Figure 12.

Based on the grouping rules, Algorithm 2 is an
example for parallelogram recognition.

Algorithm 2

1. Classify all CPP s into eight categories, and
choose the categories cpp8 as the candidate
group;

(a)
 (c)
(b)


Figure 12: Some examples of incomplete parallelo-
gram model.

2. Start from any given CPP cpp8 [pb1 , LSi, LSj ]
in candidate group, according to the grouping
rules, find the possible candidate CPP s in this
candidate group:

(a) Along clockwise direction, find the
possible adjacent CPP s sequence:
cpp8 [pb2 , LSj , LSk], cpp8 [pb3 , LSk, LSl]
and cpp8 [pb4 , LSl, LSi], and they must
satisfy that LSi is parallel to LSk and LSj

is parallel to LSl;

(b) Along counterclockwise direction, find
the possible adjacent CPP s sequence:
cpp8 [pb4 , LSl, LSi], cpp8 [pb3 , LSk, LSl]
and cpp8 [pb2 , LSj , LSk], and they must
satisfy that LSi is parallel to LSk and
LSj is parallel to LSl, This process will be
stopped if any CPP was already detected
in clockwise searching.

(c) According to the confidence measurement
to decide whether to save it as a parallelo-
gram.

3.3 Experiments

The groupings of GETs for ellipses and parallelo-
grams were demonstrated in Figure 13 and Figure 14
respectively. Each figure presents the original image,
the GETs segmentation result from the image, and
the final grouping result from the segmented GET
map. The shape completeness measure was prede-
fined with confidence ≥ 75% for both cases.

From the experiments, one may observe that in
comparing with conventional equation based shape
matching methods, the proposed method uses GETs
as the minimum tokens for shape representation
and grouping. Since GETs are descriptive in na-
ture which can be manipulated qualitatively, there-
fore the main computation for grouping shapes can
be reduced to binary reasoning. After GETs were
segmented, they have been already classified into
generic classes, so that the categorical heuristics can
help to reduce the search effort for shape grouping



Figure 13: Top image: the original image; middle im-
age: The edge detection and segments classification
result; bottom image: the ellipses grouping result
(confidence ≥ 75% ).

significantly. In the experiments, the grouping func-
tions were implemented on SUN SPARC worksta-
tion, and the process were completed in 0.1 second.

4 Conclusions

GETs are perceptually significant edge features
which are descriptive in the representation and there-
fore can be manipulated qualitatively in supporting
perceptual grouping. GETs could also be a set of ba-
sic vocabularies of perceptual organization language
for 2D shape representation and grouping. The low-

Figure 14: Top image: the original image; middle im-
age: The edge detection and segments classification
result; bottom image: the parallelograms grouping
result (confidence ≥ 75% ).

level groupings of GETs are purely data driven, but
do not depend on perfect edge data, so that they are
very robust. The high-level shape groupings of el-
lipses and parallelograms are descriptive in nature.
The principle computation for both levels of pro-
cesses are qualitative in that no expensive mathe-
matic models are involved. The results presented in
the paper demonstrated that the computational ad-
vantages of applying perceptual organization in com-
puter vision could be significant. The implementa-
tion of shape grouping presented in the paper was



based on the data in which GETs extracted from
single edge traces. Future work will be extended
to include grouping GETs extracted from different
traces.
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